A Left-truncatable prime is a prime which in a given base (say 10) does not contain 0 and which remains prime when the leading (“left”) digit is successively removed. For example, 317 is left-truncatable prime since 317, 17 and 7 are all prime. There are total 4260 left-truncatable primes.
The task is to check whether the given number (N >0) is left-truncatable prime or not.
Examples:
Input: 317 Output: Yes Input: 293 Output: No 293 is not left-truncatable prime because numbers formed are 293, 93 and 3. Here, 293 and 3 are prime but 93 is not prime.
The idea is to first check whether the number contains 0 as a digit or not and count number of digits in the given number N. If it contains 0, then return false otherwise generate all the primes less than or equal to the given number N using Sieve of Eratosthenes.. Once we have generated all such primes, then we check whether the number remains prime when the leading (“left”) digit is successively removed.
Below is the implementation of the above approach.
C++
// Program to check whether a given number // is left-truncatable prime or not. #include<bits/stdc++.h> using namespace std; /* Function to calculate x raised to the power y */ int power( int x, unsigned int y) { if (y == 0) return 1; else if (y%2 == 0) return power(x, y/2)*power(x, y/2); else return x*power(x, y/2)*power(x, y/2); } // Generate all prime numbers less than n. bool sieveOfEratosthenes( int n, bool isPrime[]) { // Initialize all entries of boolean array // as true. A value in isPrime[i] will finally // be false if i is Not a prime, else true // bool isPrime[n+1]; isPrime[0] = isPrime[1] = false ; for ( int i=2; i<=n; i++) isPrime[i] = true ; for ( int p=2; p*p<=n; p++) { // If isPrime[p] is not changed, then it is // a prime if (isPrime[p] == true ) { // Update all multiples of p for ( int i=p*2; i<=n; i += p) isPrime[i] = false ; } } } // Returns true if n is right-truncatable, else false bool leftTruPrime( int n) { int temp = n, cnt = 0, temp1; // Counting number of digits in the // input number and checking whether it // contains 0 as digit or not. while (temp) { cnt++; // counting number of digits. temp1 = temp%10; // checking whether digit is 0 or not if (temp1==0) return false ; // if digit is 0, return false. temp = temp/10; } // Generating primes using Sieve bool isPrime[n+1]; sieveOfEratosthenes(n, isPrime); // Checking whether the number remains prime // when the leading ("left") digit is successively // removed for ( int i=cnt; i>0; i--) { // Checking number by successively removing // leading ("left") digit. /* n=113, cnt=3 i=3 mod=1000 n%mod=113 i=2 mod=100 n%mod=13 i=3 mod=10 n%mod=3 */ int mod= power(10,i); if (!isPrime[n%mod]) // checking prime return false ; // if not prime, return false } return true ; // if remains prime, return true } // Driver program int main() { int n = 113; if (leftTruPrime(n)) cout << n << " is left truncatable prime" << endl; else cout << n << " is not left truncatable prime" << endl; return 0; } |
Java
// Program to check whether // a given number is left // truncatable prime or not. import java.io.*; class GFG { // Function to calculate x // raised to the power y static int power( int x, int y) { if (y == 0 ) return 1 ; else if (y% 2 == 0 ) return power(x, y/ 2 ) *power(x, y/ 2 ); else return x*power(x, y/ 2 ) *power(x, y/ 2 ); } // Generate all prime // numbers less than n. static void sieveOfEratosthenes ( int n, boolean isPrime[]) { // Initialize all entries of boolean // array as true. A value in isPrime[i] // will finally be false if i is Not // a prime, else true bool isPrime[n+1]; isPrime[ 0 ] = isPrime[ 1 ] = false ; for ( int i = 2 ; i <= n; i++) isPrime[i] = true ; for ( int p = 2 ; p*p <= n; p++) { // If isPrime[p] is not changed, // then it is a prime if (isPrime[p] == true ) { // Update all multiples of p for ( int i = p* 2 ; i <= n; i += p) isPrime[i] = false ; } } } // Returns true if n is // right-truncatable, else false static boolean leftTruPrime( int n) { int temp = n, cnt = 0 , temp1; // Counting number of digits in the // input number and checking whether // it contains 0 as digit or not. while (temp != 0 ) { // counting number of digits. cnt++; temp1 = temp% 10 ; // checking whether digit is // 0 or not if (temp1 == 0 ) return false ; temp = temp/ 10 ; } // Generating primes using Sieve boolean isPrime[] = new boolean [n+ 1 ]; sieveOfEratosthenes(n, isPrime); // Checking whether the number // remains prime when the leading // ("left") digit is successively removed for ( int i = cnt; i > 0 ; i--) { // Checking number by successively // removing leading ("left") digit. /* n=113, cnt=3 i=3 mod=1000 n%mod=113 i=2 mod=100 n%mod=13 i=3 mod=10 n%mod=3 */ int mod = power( 10 ,i); if (!isPrime[n%mod]) return false ; } // if remains prime, return true return true ; } // Driver program public static void main(String args[]) { int n = 113 ; if (leftTruPrime(n)) System.out.println (n+ " is left truncatable prime" ); else System.out.println (n+ " is not left truncatable prime" ); } } /*This code is contributed by Nikita Tiwari.*/ |
Python3
# Python3 Program to # check whether a # given number is left # truncatable prime # or not. # Function to calculate # x raised to the power y def power(x, y) : if (y = = 0 ) : return 1 elif (y % 2 = = 0 ) : return (power(x, y / / 2 ) * power(x, y / / 2 )) else : return (x * power(x, y / / 2 ) * power(x, y / / 2 )) # Generate all prime # numbers less than n. def sieveOfEratosthenes(n, isPrime) : # Initialize all entries # of boolean array # as true. A value in # isPrime[i] will finally # be false if i is Not a # prime, else true # bool isPrime[n+1]; isPrime[ 0 ] = isPrime[ 1 ] = False for i in range ( 2 , n + 1 ) : isPrime[i] = True p = 2 while (p * p < = n) : # If isPrime[p] is not # changed, then it is # a prime if (isPrime[p] = = True ) : # Update all multiples # of p i = p * 2 while (i < = n) : isPrime[i] = False i = i + p p = p + 1 # Returns true if n is # right-truncatable, # else false def leftTruPrime(n) : temp = n cnt = 0 # Counting number of # digits in the input # number and checking # whether it contains # 0 as digit or not. while (temp ! = 0 ) : # counting number # of digits. cnt = cnt + 1 # checking whether # digit is 0 or not temp1 = temp % 10 ; if (temp1 = = 0 ) : # if digit is 0, # return false. return False temp = temp / / 10 # Generating primes # using Sieve isPrime = [ None ] * (n + 1 ) sieveOfEratosthenes(n, isPrime) # Checking whether the # number remains prime # when the leading # ("left") digit is # successively removed for i in range (cnt, 0 , - 1 ) : # Checking number by # successively removing # leading ("left") digit. # n=113, cnt=3 # i=3 mod=1000 n%mod=113 # i=2 mod=100 n%mod=13 # i=3 mod=10 n%mod=3 mod = power( 10 , i) # checking prime if (isPrime[n % mod] ! = True ) : # if not prime, # return false return False # if remains prime # , return true return True # Driver program n = 113 if (leftTruPrime(n)) : print (n, "is left truncatable prime" ) else : print (n, "is not left truncatable prime" ) # This code is contributed by Nikita Tiwari. |
C#
// Program to check whether // a given number is left // truncatable prime or not. using System; class GFG { // Function to calculate x // raised to the power y static int power( int x, int y) { if (y == 0) return 1; else if (y%2 == 0) return power(x, y/2) *power(x, y/2); else return x*power(x, y/2) *power(x, y/2); } // Generate all prime // numbers less than n. static void sieveOfEratosthenes ( int n, bool []isPrime) { // Initialize all entries of boolean // array as true. A value in isPrime[i] // will finally be false if i is Not // a prime, else true bool isPrime[n+1]; isPrime[0] = isPrime[1] = false ; for ( int i = 2; i <= n; i++) isPrime[i] = true ; for ( int p = 2; p * p <= n; p++) { // If isPrime[p] is not changed, // then it is a prime if (isPrime[p] == true ) { // Update all multiples of p for ( int i = p * 2; i <= n; i += p) isPrime[i] = false ; } } } // Returns true if n is // right-truncatable, else false static bool leftTruPrime( int n) { int temp = n, cnt = 0, temp1; // Counting number of digits in the // input number and checking whether // it contains 0 as digit or not. while (temp != 0) { // counting number of digits. cnt++; temp1 = temp%10; // checking whether digit is // 0 or not if (temp1 == 0) return false ; temp = temp/10; } // Generating primes using Sieve bool []isPrime = new bool [n+1]; sieveOfEratosthenes(n, isPrime); // Checking whether the number // remains prime when the leading // ("left") digit is successively removed for ( int i = cnt; i > 0; i--) { // Checking number by successively // removing leading ("left") digit. /* n=113, cnt=3 i=3 mod=1000 n%mod=113 i=2 mod=100 n%mod=13 i=3 mod=10 n%mod=3 */ int mod = power(10, i); if (!isPrime[n%mod]) return false ; } // if remains prime, return true return true ; } // Driver program public static void Main() { int n = 113; if (leftTruPrime(n)) Console.WriteLine (n + " is left truncatable prime" ); else Console.WriteLine (n + " is not left truncatable prime" ); } } //This code is contributed by Anant Agarwal. |
PHP
<?php // PHP Program to check whether a // given number is left-truncatable // prime or not. /* Function to calculate x raised to the power y */ function power( $x , $y ) { if ( $y == 0) return 1; else if ( $y % 2 == 0) return power( $x , $y /2) * power( $x , $y /2); else return $x *power( $x , $y /2) * power( $x , $y /2); } // Generate all prime numbers // less than n. function sieveOfEratosthenes( $n , $l , $isPrime ) { // Initialize all entries of // boolean array as true. A // value in isPrime[i] will // finally be false if i is // Not a prime, else true // bool isPrime[n+1]; $isPrime [0] = $isPrime [1] = -1; for ( $i = 2; $i <= $n ; $i ++) $isPrime [ $i ] = true; for ( $p = 2; $p * $p <= $n ; $p ++) { // If isPrime[p] is not // changed, then it is // a prime if ( $isPrime [ $p ] == true) { // Update all multiples // of p for ( $i = $p * 2; $i <= $n ; $i += $p ) $isPrime [ $i ] = false; } } } // Returns true if n is // right-truncatable, else false function leftTruPrime( $n ) { $temp = $n ; $cnt = 0; $temp1 ; // Counting number of digits in // the input number and checking // whether it contains 0 as digit // or not. while ( $temp ) { // counting number of digits. $cnt ++; // checking whether digit is // 0 or not $temp1 = $temp % 10; if ( $temp1 == 0) // if digit is 0, return // false. return -1; $temp = $temp / 10; } // Generating primes using Sieve $isPrime [ $n + 1]; sieveOfEratosthenes( $n , $isPrime ); // Checking whether the number // remains prime when the leading // ("left") digit is successively // removed for ( $i = $cnt ; $i > 0; $i --) { // Checking number by // successively removing // leading ("left") digit. /* n=113, cnt=3 i=3 mod=1000 n%mod=113 i=2 mod=100 n%mod=13 i=3 mod=10 n%mod=3 */ $mod = power(10, $i ); // checking prime if (! $isPrime [ $n % $mod ]) // if not prime, return // false return -1; } // if remains prime, return true return true; } // Driver program $n = 113; if (leftTruPrime( $n )) echo $n , " is left truncatable" , " prime" , "\n" ; else echo $n , " is not left " , "truncatable prime" , "\n" ; // This code is contributed by ajit ?> |
Javascript
<script> // Javascript program to check whether // a given number is left // truncatable prime or not. function power(x, y) { if (y == 0) return 1; else if (y%2 == 0) return power(x, Math.floor(y/2)) *power(x, Math.floor(y/2)); else return x*power(x, Math.floor(y/2)) *power(x, Math.floor(y/2)); } // Generate all prime // numbers less than n. function sieveOfEratosthenes (n, isPrime) { // Initialize all entries of boolean // array as true. A value in isPrime[i] // will finally be false if i is Not // a prime, else true bool isPrime[n+1]; isPrime[0] = isPrime[1] = false ; for (let i = 2; i <= n; i++) isPrime[i] = true ; for (let p = 2; p*p <= n; p++) { // If isPrime[p] is not changed, // then it is a prime if (isPrime[p] == true ) { // Update all multiples of p for (let i = p*2; i <= n; i += p) isPrime[i] = false ; } } } // Returns true if n is // right-truncatable, else false function leftTruPrime(n) { let temp = n, cnt = 0, temp1; // Counting number of digits in the // input number and checking whether // it contains 0 as digit or not. while (temp != 0) { // counting number of digits. cnt++; temp1 = temp%10; // checking whether digit is // 0 or not if (temp1 == 0) return false ; temp = Math.floor(temp/10); } // Generating primes using Sieve let isPrime = Array.from({length: n+1}, (_, i) => 0); sieveOfEratosthenes(n, isPrime); // Checking whether the number // remains prime when the leading // ("left") digit is successively removed for (let i = cnt; i > 0; i--) { // Checking number by successively // removing leading ("left") digit. /* n=113, cnt=3 i=3 mod=1000 n%mod=113 i=2 mod=100 n%mod=13 i=3 mod=10 n%mod=3 */ let mod = power(10,i); if (!isPrime[n%mod]) return false ; } // if remains prime, return true return true ; } // Driver Code let n = 113; if (leftTruPrime(n)) document.write (n+ " is left truncatable prime" ); else document.write (n+ " is not left truncatable prime" ); // This code is contributed by sanjoy_62. </script> |
113 is left truncatable prime
Time Complexity: O(N*N)
Auxiliary Space: O(N)
Related Article :
Right-Truncatable Prime
References: https://en.wikipedia.org/wiki/Truncatable_prime
This article is contributed by Rahul Agrawal. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!