Sunday, December 29, 2024
Google search engine
HomeData Modelling & AILCM and HCF of fractions

LCM and HCF of fractions

Given n fractions as two arrays Num and Den. The task is to find out the L.C.M of the fractions.

Examples: 

Input: num[] = {1, 7, 4}, den[] = {2, 3, 6} 
Output: LCM is = 28/1 
The given fractions are 1/2, 7/3 and 4/6. 
The LCM is 28/1

Input: num[] = {24, 48, 72, 96}, den[] = {2, 6, 8, 3} 
Output: LCM is = 288/1 
 

LCM of A/B and C/D = (LCM of A and C) / (HCF of B and D) 
 

Below is the implementation of above approach:

C++




// C++ program to find LCM of array of fractions
#include <bits/stdc++.h>
using namespace std;
 
// Function that will calculate
// the Lcm of Numerator
int LCM(int num[], int N)
{
    int ans = num[0];
    for (int i = 1; i < N; i++)
        ans = (((num[i] * ans)) / (__gcd(num[i], ans)));
    return ans;
}
 
// Function that will calculate
// the Hcf of Denominator
int HCF(int den[], int N)
{
    int ans = den[0];   
    for(int i = 1; i < N; i++)
        ans = __gcd(den[i], ans);   
    return ans;
}
 
int LCMOfFractions(int num[], int den[], int N)
{
    int Numerator = LCM(num, N);
    int Denominator = HCF(den, N);
 
    int gcd = __gcd(Numerator, Denominator);
 
    Numerator = Numerator / gcd;
    Denominator = Denominator / gcd;
 
    cout << "LCM is = " << Numerator << "/" << Denominator;
}
 
// Driver code
int main()
{
    int num[] = { 1, 7, 4 }, den[] = { 2, 3, 6 };
    int N = sizeof(num) / sizeof(num[0]);
    LCMOfFractions(num, den, N);
    return 0;
}


Java




// Java program to find LCM of array of fractions
 
class GFG{
     
// Recursive function to return gcd of a and b
    static int gcd(int a, int b)
    {
        // Everything divides 0 
        if (a == 0)
          return b;
        if (b == 0)
          return a;
        
        // base case
        if (a == b)
            return a;
        
        // a is greater
        if (a > b)
            return gcd(a-b, b);
        return gcd(a, b-a);
    }
     
// Function that will calculate
// the Lcm of Numerator
static int LCM(int num[], int N)
{
    int ans = num[0];
    for (int i = 1; i < N; i++)
        ans = (((num[i] * ans)) / (gcd(num[i], ans)));
    return ans;
}
 
// Function that will calculate
// the Hcf of Denominator
static int HCF(int den[], int N)
{
    int ans = den[0];
    for(int i = 1; i < N; i++)
        ans = gcd(den[i], ans);
    return ans;
}
 
static int LCMOfFractions(int num[], int den[], int N)
{
    int Numerator = LCM(num, N);
    int Denominator = HCF(den, N);
 
    int gcd1 = gcd(Numerator, Denominator);
 
    Numerator = Numerator / gcd1;
    Denominator = Denominator / gcd1;
 
    System.out.println("LCM is = " +Numerator+ "/" + Denominator);
    return 0;
}
 
// Driver code
public static void main(String args[])
{
    int num[] = { 1, 7, 4 }, den[] = { 2, 3, 6 };
    int N = num.length;
    LCMOfFractions(num, den, N);
}
}


Python3




# Python3 def program to find LCM of
# array of fractions
 
# Recursive function to
# return gcd of a and b
def gcd(a, b):
  
    # Everything divides 0
    if (a == 0):
        return b;
    if (b == 0):
        return a;
     
    # base case
    if (a == b):
        return a;
     
    # a is greater
    if (a > b):
        return gcd(a - b, b);
    return gcd(a, b - a);
     
# Function that will calculate
# the Lcm of Numerator
def LCM(num, N):
 
    ans = num[0];
    for i in range(1,N):
        ans = (((num[i] * ans)) / (gcd(num[i], ans)));
    return ans;
 
 
# Function that will calculate
# the Hcf of Denominator
def HCF(den, N):
 
    ans = den[0];
    for i in range(1,N):
        ans = gcd(den[i], ans);
    return ans;
 
 
def LCMOfFractions(num, den, N):
 
    Numerator = LCM(num, N);
    Denominator = HCF(den, N);
 
    gcd1 = gcd(Numerator, Denominator);
 
    Numerator = int(Numerator / gcd1);
    Denominator = int(Denominator / gcd1);
 
    print("LCM is =",Numerator,"/",Denominator);
 
# Driver code
num = [1, 7, 4 ];
den = [2, 3, 6 ];
N = len(num);
LCMOfFractions(num, den, N);
 
# This code is contributed
# by mits


C#




// C# program to find LCM of
// array of fractions
using System;
 
class GFG
{
     
// Recursive function to return
// gcd of a and b
static int gcd(int a, int b)
{
    // Everything divides 0
    if (a == 0)
        return b;
    if (b == 0)
        return a;
     
    // base case
    if (a == b)
        return a;
     
    // a is greater
    if (a > b)
        return gcd(a - b, b);
    return gcd(a, b - a);
}
 
// Function that will calculate
// the Lcm of Numerator
static int LCM(int []num, int N)
{
    int ans = num[0];
    for (int i = 1; i < N; i++)
        ans = (((num[i] * ans)) /
                (gcd(num[i], ans)));
    return ans;
}
 
// Function that will calculate
// the Hcf of Denominator
static int HCF(int []den, int N)
{
    int ans = den[0];
    for(int i = 1; i < N; i++)
        ans = gcd(den[i], ans);
    return ans;
}
 
static int LCMOfFractions(int []num,
                          int []den, int N)
{
    int Numerator = LCM(num, N);
    int Denominator = HCF(den, N);
 
    int gcd1 = gcd(Numerator, Denominator);
 
    Numerator = Numerator / gcd1;
    Denominator = Denominator / gcd1;
 
    Console.WriteLine("LCM is = " + Numerator +
                            "/" + Denominator);
    return 0;
}
 
// Driver code
static public void Main(String []args)
{
    int[] num = { 1, 7, 4 }, den = { 2, 3, 6 };
    int N = num.Length;
    LCMOfFractions(num, den, N);
}
}
 
// This code is contributed by Arnab Kundu


PHP




<?php
// PHP program to find LCM of
// array of fractions
 
// Recursive function to
// return gcd of a and b
function gcd($a, $b)
{
    // Everything divides 0
    if ($a == 0)
        return $b;
    if ($b == 0)
        return $a;
     
    // base case
    if ($a == $b)
        return $a;
     
    // a is greater
    if ($a > $b)
        return gcd($a - $b, $b);
    return gcd($a, $b - $a);
}
     
// Function that will calculate
// the Lcm of Numerator
function LCM($num, $N)
{
    $ans = $num[0];
    for ($i = 1; $i < $N; $i++)
        $ans = ((($num[$i] * $ans)) /
             (gcd($num[$i], $ans)));
    return $ans;
}
 
// Function that will calculate
// the Hcf of Denominator
function HCF($den, $N)
{
    $ans = $den[0];
    for($i = 1; $i < $N; $i++)
        $ans = gcd($den[$i], $ans);
    return $ans;
}
 
function LCMOfFractions($num, $den, $N)
{
    $Numerator = LCM($num, $N);
    $Denominator = HCF($den, $N);
 
    $gcd1 = gcd($Numerator, $Denominator);
 
    $Numerator = $Numerator / $gcd1;
    $Denominator = $Denominator / $gcd1;
 
    echo "LCM is = " . $Numerator .
                 "/" . $Denominator;
    return 0;
}
 
// Driver code
$num = array(1, 7, 4 );
$den = array(2, 3, 6 );
$N = sizeof($num);
LCMOfFractions($num, $den, $N);
 
// This code is contributed
// by Akanksha Rai


Javascript




<script>
 
// Javascript program to find LCM of
// array of fractions
var num = [ 1, 7, 4 ];
var den = [ 2, 3, 6 ];
 
// Recursive function to return
// gcd of a and b
function gcd(a, b)
{
     
    // Everything divides 0 
    if (a == 0)
        return b;
    if (b == 0)
        return a;
     
    // Base case
    if (a == b)
        return a;
     
    // a is greater
    if (a > b)
        return gcd(a - b, b);
         
    return gcd(a, b - a);
}
 
// Function that will calculate
// the Lcm of Numerator
function LCM(num, N)
{
    var ans = num[0];
    for(var i = 1; i < N; i++)
        ans = (((num[i] * ans)) /
            (gcd(num[i], ans)));
             
    return ans;
}
 
// Function that will calculate
// the Hcf of Denominator
function HCF(den, N)
{
    var ans = den[0];
    for(var i = 1; i < N; i++)
        ans = gcd(den[i], ans);
         
    return ans;
}
 
function LCMOfFractions(num, den, N)
{
    var Numerator = LCM(num, N);
    var Denominator = HCF(den, N);
 
    var gcd1 = gcd(Numerator, Denominator);
 
    Numerator = Numerator / gcd1;
    Denominator = Denominator / gcd1;
 
    document.write("LCM is = " + Numerator +
                           "/" + Denominator);
    return 0;
}
 
// Driver code
var N = num.length;
 
LCMOfFractions(num, den, N);
 
// This code is contributed by Ankita saini
    
</script>


Output: 

LCM is = 28/1

 

Time Complexity: O(N * log(min(a, b)))

Auxiliary Space: O(log(min(a, b)))

Given n fractions as two arrays Num and Den. The task is to find out the L.C.M of the fractions. 

Input: num[] = {1, 7, 4}, den[] = {2, 3, 6} 
Output: HCF is 1/6 
The given fractions are 1/2, 7/3 and 4/6. 
The HCF is 1/6

Input: num[] = {24, 48, 72, 96}, den[] = {2, 6, 8, 3} 
Output: HCF is 1/1 
 

HCF of A/B and C/D = (HCF of A and C) / (LCM of B and D) 
 

Below is the implementation of above approach: 

C++




// CPP program to find GCD of array of fractions
#include <bits/stdc++.h>
using namespace std;
 
// Function that will calculate
// the Lcm of Denominator
int LCM(int den[], int N)
{
    int ans = den[0];
    for (int i = 1; i < N; i++)
        ans = (((den[i] * ans)) / (__gcd(den[i], ans)));
    return ans;
}
 
// Function that will calculate
// the Hcf of Numerator
int HCF(int num[], int N)
{
    int ans = num[0];
    for (int i = 1; i < N; i++)
        ans = __gcd(num[i], ans);
    return ans;
}
 
int HCFOfFractions(int num[], int den[], int N)
{
    int Numerator = HCF(num, N);
    int Denominator = LCM(den, N);
 
    int result = __gcd(Numerator, Denominator);
 
    Numerator = Numerator / result;
    Denominator = Denominator / result;
 
    cout << "HCF is = " << Numerator << "/" << Denominator;
}
 
// Driver code
int main()
{
    int num[] = { 24, 48, 72, 96 }, den[] = { 2, 6, 8, 3 };
    int N = sizeof(num) / sizeof(num[0]);
    HCFOfFractions(num, den, N);
    return 0;
}


Java




// Java program to find GCD of array of fractions
 
class GFG{
 
static int __gcd(int a, int b)
{
    if (a == 0)
        return b;
    return __gcd(b % a, a);
}
// Function that will calculate
// the Lcm of Denominator
static int LCM(int den[], int N)
{
    int ans = den[0];
    for (int i = 1; i < N; i++)
        ans = (((den[i] * ans)) / (__gcd(den[i], ans)));
    return ans;
}
 
// Function that will calculate
// the Hcf of Numerator
static int HCF(int num[], int N)
{
    int ans = num[0];
    for (int i = 1; i < N; i++)
        ans = __gcd(num[i], ans);
    return ans;
}
 
static void HCFOfFractions(int num[], int den[], int N)
{
    int Numerator = HCF(num, N);
    int Denominator = LCM(den, N);
 
    int result = __gcd(Numerator, Denominator);
 
    Numerator = Numerator / result;
    Denominator = Denominator / result;
 
    System.out.println("HCF is = "+Numerator+"/"+Denominator);
}
 
// Driver code
public static void main(String[] args)
{
    int num[] = { 24, 48, 72, 96 }, den[] = { 2, 6, 8, 3 };
    int N = num.length;
    HCFOfFractions(num, den, N);
     
}
}
// This code is contributed by mits


Python3




# Python3 def program to find LCM
# of array of fractions
 
# Recursive function to
# return gcd of a and b
def gcd(a, b):
 
    # Everything divides 0
    if (a == 0):
        return b;
    if (b == 0):
        return a;
     
    # base case
    if (a == b):
        return a;
     
    # a is greater
    if (a > b):
        return gcd(a - b, b);
    return gcd(a, b - a);
     
# Function that will calculate
# the Lcm of Numerator
def LCM(den, N):
 
    ans = den[0];
    for i in range(1,N):
        ans = (((den[i] * ans)) /
                (gcd(den[i], ans)));
    return ans;
 
# Function that will calculate
# the Hcf of Denominator
def HCF(num, N):
 
    ans = num[0];
    for i in range(1, N):
        ans = gcd(num[i], ans);
    return ans;
 
def HCFOfFractions(num, den, N):
 
    Numerator = HCF(num, N);
    Denominator = LCM(den, N);
 
    gcd1 = gcd(Numerator, Denominator);
 
    Numerator = int(Numerator / gcd1);
    Denominator = int(Denominator / gcd1);
 
    print("HCF is =", Numerator,
                 "/", Denominator);
 
# Driver code
num = [24, 48, 72, 96 ];
den = [2, 6, 8, 3 ];
N = len(num);
HCFOfFractions(num, den, N);
 
# This code is contributed
# by Akanksha Rai


C#




// C# program to find GCD of array of fractions
using System;
class GFG{
 
static int __gcd(int a, int b)
{
    if (a == 0)
        return b;
    return __gcd(b % a, a);
}
// Function that will calculate
// the Lcm of Denominator
static int LCM(int[] den, int N)
{
    int ans = den[0];
    for (int i = 1; i < N; i++)
        ans = (((den[i] * ans)) / (__gcd(den[i], ans)));
    return ans;
}
 
// Function that will calculate
// the Hcf of Numerator
static int HCF(int[] num, int N)
{
    int ans = num[0];
    for (int i = 1; i < N; i++)
        ans = __gcd(num[i], ans);
    return ans;
}
 
static void HCFOfFractions(int[] num, int[] den, int N)
{
    int Numerator = HCF(num, N);
    int Denominator = LCM(den, N);
 
    int result = __gcd(Numerator, Denominator);
 
    Numerator = Numerator / result;
    Denominator = Denominator / result;
 
    Console.WriteLine("HCF is = "+Numerator+"/"+Denominator);
}
 
// Driver code
public static void Main()
{
    int[] num = { 24, 48, 72, 96 }, den = { 2, 6, 8, 3 };
    int N = num.Length;
    HCFOfFractions(num, den, N);
     
}
}
// This code is contributed by mits


PHP




<?php
// PHP program to find GCD of
// array of fractions
function __gcd($a, $b)
{
    if ($a == 0)
        return $b;
    return __gcd($b % $a, $a);
}
 
// Function that will calculate
// the Lcm of Denominator
function LCM($den, $N)
{
    $ans = $den[0];
    for ($i = 1; $i < $N; $i++)
        $ans = ((($den[$i] * $ans)) /
               (__gcd($den[$i], $ans)));
    return $ans;
}
 
// Function that will calculate
// the Hcf of Numerator
function HCF($num, $N)
{
    $ans = $num[0];
    for ($i = 1; $i < $N; $i++)
        $ans = __gcd($num[$i], $ans);
    return $ans;
}
 
function HCFOfFractions($num, $den, $N)
{
    $Numerator = HCF($num, $N);
    $Denominator = LCM($den, $N);
 
    $result = __gcd($Numerator, $Denominator);
 
    $Numerator = $Numerator / $result;
    $Denominator = $Denominator / $result;
 
    echo "HCF is = " . $Numerator .
                 "/" . $Denominator;
}
 
// Driver code
$num = array( 24, 48, 72, 96 );
$den = array( 2, 6, 8, 3 );
$N = count($num);
HCFOfFractions($num, $den, $N);
 
// This code is contributed by mits
?>


Javascript




<script>
 
// Javascript program to find GCD of array of fractions
 
const __gcd = (a, b) => {
  if(a == 0){
    return b;
  }
  return __gcd(b % a, a);
}
 
// Function that will calculate 
// the Lcm of Denominator
 
const LCM = (den, N) => { 
    let ans = den[0]; 
    for (var i = 1; i < N; i++) 
        ans = (((den[i] * ans)) / 
               (__gcd(den[i], ans))); 
    return ans; 
}
 
// Function that will calculate 
// the Hcf of Numerator 
const HCF = (num, N) => { 
    let ans = num[0]; 
    for (var i = 1; i < N; i++) 
        ans = __gcd(num[i], ans); 
    return ans; 
 
const HCFOfFractions = (num, den, N) => { 
    let Numerator = HCF(num, N); 
    let Denominator = LCM(den, N); 
   
    let result = __gcd(Numerator, Denominator); 
   
    Numerator = Numerator / result; 
    Denominator = Denominator / result; 
   
    document.write(`HCF is = ${Numerator} / ${Denominator}`); 
}
 
// Driver code 
let num = [24, 48, 72, 96 ];
let den = [2, 6, 8, 3 ]; 
let N = num.length; 
HCFOfFractions(num, den, N); 
   
// This code is contributed by _saurabh_jaiswal
 
</script>


Output: 

HCF is = 1/1

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments