Saturday, November 16, 2024
Google search engine
HomeLanguagesDynamic ProgrammingLCA in a tree using Binary Lifting Technique

LCA in a tree using Binary Lifting Technique

Given a binary tree, the task is to find the Lowest Common Ancestor of the given two nodes in the tree. 
Let G be a tree then the LCA of two nodes u and v is defined as the node w in the tree which is an ancestor of both u and v and is farthest from the root node. If one node is the ancestor of another one then that particular node is the LCA of those two nodes. In particular, if we want to find the LCA of u and v, and if u is a parent of v, then u is their lowest common ancestor.

Example: 

Input: 

Output: 
The LCA of 6 and 9 is 1. 
The LCA of 5 and 9 is 1. 
The LCA of 6 and 8 is 3. 
The LCA of 6 and 1 is 1. 

Approach: The article describes an approach known as Binary Lifting to find the Lowest Common Ancestor of two nodes in a tree. There can be many approaches to solve the LCA problem. We are discussing the Binary Lifting Technique, the others can be read from here and here
Binary Lifting is a dynamic programming approach where we pre-compute an array memo[1, n][1, log(n)] where memo[i][j] contains 2^j-th ancestor of node i. For computing the values of memo[][], the following recursion may be used:

memo state:  

   memo[i][j] = i-th node's 2^(j)th ancestor in the path  

memo initialization:  

   memo[i][j] = memo[i][0] (first parent (2^0) of each node is given)

memo trans:

   memo[i][j] = memo[ memo [i][j - 1]]

meaning: A(i,2^j)=A( A(i , 2^(j-1) ) , 2^(j-1) ) 

To find the (2^j)-th ancestor of i, recursively find i-th node's 2^(j-1)th ancestor's 2^(j-1)th ancestor. (2^(j) = 2^(j-1) + 2^(j-1))

So:

memo[i][j] = parent[i] if j = 0 and 
memo[i][j] = memo[memo[i][j - 1]][j - 1] if j > 0. 

We first check whether a node is an ancestor of another or not and if one node is ancestor of another then it is the LCA of these two nodes otherwise we find a node that is not the common ancestor of both u and v and is the highest(i.e. a node x such that x is not the common ancestor of u and v but memo[x][0] is) in the tree. After finding such a node (let it be x), we print the first ancestor of x i.e. memo[x][0] which will be the required LCA.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Pre-processing to calculate values of memo[][]
void dfs(int u, int p, int **memo, vector<int> &lev, int log, vector<int> *g)
{
    // Using recursion formula to calculate
    // the values of memo[][]
    memo[u][0] = p;
    for (int i = 1; i <= log; i++)
        memo[u][i] = memo[memo[u][i - 1]][i - 1];
    for (int v : g[u])
    {
        if (v != p)
        {
            lev[v] = lev[u] + 1;
            dfs(v, u, memo, lev, log, g);
        }
    }
}
 
// Function to return the LCA of nodes u and v
int lca(int u, int v, int log, vector<int> &lev, int **memo)
{
    // The node which is present farthest
    // from the root node is taken as u
    // If v is farther from root node
    // then swap the two
    if (lev[u] < lev[v])
        swap(u, v);
 
    // Finding the ancestor of u
    // which is at same level as v
    for (int i = log; i >= 0; i--)
        if ((lev[u] - pow(2, i)) >= lev[v])
            u = memo[u][i];
 
    // If v is the ancestor of u
    // then v is the LCA of u and v
    if (u == v)
        return u;
 
    // Finding the node closest to the root which is
    // not the common ancestor of u and v i.e. a node
    // x such that x is not the common ancestor of u
    // and v but memo[x][0] is
    for (int i = log; i >= 0; i--)
    {
        if (memo[u][i] != memo[v][i])
        {
            u = memo[u][i];
            v = memo[v][i];
        }
    }
 
    // Returning the first ancestor
    // of above found node
    return memo[u][0];
}
 
// Driver Code
int main()
{
    // Number of nodes
    int n = 9;
 
    // vector to store tree
    vector<int> g[n + 1];
 
    int log = (int)ceil(log2(n));
    int **memo = new int *[n + 1];
    for (int i = 0; i < n + 1; i++)
        memo[i] = new int[log + 1];
 
    // Stores the level of each node
    vector<int> lev(n + 1);
 
    // Initialising memo values with -1
    for (int i = 0; i <= n; i++)
        memset(memo[i], -1, sizeof memo[i]);
 
    // Add edges
    g[1].push_back(2);
    g[2].push_back(1);
    g[1].push_back(3);
    g[3].push_back(1);
    g[1].push_back(4);
    g[4].push_back(1);
    g[2].push_back(5);
    g[5].push_back(2);
    g[3].push_back(6);
    g[6].push_back(3);
    g[3].push_back(7);
    g[7].push_back(3);
    g[3].push_back(8);
    g[8].push_back(3);
    g[4].push_back(9);
    g[9].push_back(4);
    dfs(1, 1, memo, lev, log, g);
    cout << "The LCA of 6 and 9 is " << lca(6, 9, log, lev, memo) << endl;
    cout << "The LCA of 5 and 9 is " << lca(5, 9, log, lev, memo) << endl;
    cout << "The LCA of 6 and 8 is " << lca(6, 8, log, lev, memo) << endl;
    cout << "The LCA of 6 and 1 is " << lca(6, 1, log, lev, memo) << endl;
 
    return 0;
}
 
// This code is contributed by
// sanjeev2552


Java




// Java implementation of the approach
import java.util.*;
public class GFG {
 
    // ArrayList to store tree
    static ArrayList<Integer> g[];
    static int memo[][], lev[], log;
 
    // Pre-processing to calculate values of memo[][]
    static void dfs(int u, int p)
    {
 
        // Using recursion formula to calculate
        // the values of memo[][]
        memo[u][0] = p;
        for (int i = 1; i <= log; i++)
            memo[u][i] = memo[memo[u][i - 1]][i - 1];
        for (int v : g[u]) {
            if (v != p) {
 
                // Calculating the level of each node
                lev[v] = lev[u] + 1;
                dfs(v, u);
            }
        }
    }
 
    // Function to return the LCA of nodes u and v
    static int lca(int u, int v)
    {
        // The node which is present farthest
        // from the root node is taken as u
        // If v is farther from root node
        // then swap the two
        if (lev[u] < lev[v]) {
            int temp = u;
            u = v;
            v = temp;
        }
 
        // Finding the ancestor of u
        // which is at same level as v
        for (int i = log; i >= 0; i--) {
            if ((lev[u] - (int)Math.pow(2, i)) >= lev[v])
                u = memo[u][i];
        }
 
        // If v is the ancestor of u
        // then v is the LCA of u and v
        if (u == v)
            return u;
 
        // Finding the node closest to the root which is
        // not the common ancestor of u and v i.e. a node
        // x such that x is not the common ancestor of u
        // and v but memo[x][0] is
        for (int i = log; i >= 0; i--) {
            if (memo[u][i] != memo[v][i]) {
                u = memo[u][i];
                v = memo[v][i];
            }
        }
 
        // Returning the first ancestor
        // of above found node
        return memo[u][0];
    }
 
    // Driver code
    public static void main(String args[])
    {
 
        // Number of nodes
        int n = 9;
        g = new ArrayList[n + 1];
 
        // log(n) with base 2
        log = (int)Math.ceil(Math.log(n) / Math.log(2));
        memo = new int[n + 1][log + 1];
 
        // Stores the level of each node
        lev = new int[n + 1];
 
        // Initialising memo values with -1
        for (int i = 0; i <= n; i++)
            Arrays.fill(memo[i], -1);
        for (int i = 0; i <= n; i++)
            g[i] = new ArrayList<>();
 
        // Add edges
        g[1].add(2);
        g[2].add(1);
        g[1].add(3);
        g[3].add(1);
        g[1].add(4);
        g[4].add(1);
        g[2].add(5);
        g[5].add(2);
        g[3].add(6);
        g[6].add(3);
        g[3].add(7);
        g[7].add(3);
        g[3].add(8);
        g[8].add(3);
        g[4].add(9);
        g[9].add(4);
        dfs(1, 1);
        System.out.println("The LCA of 6 and 9 is " + lca(6, 9));
        System.out.println("The LCA of 5 and 9 is " + lca(5, 9));
        System.out.println("The LCA of 6 and 8 is " + lca(6, 8));
        System.out.println("The LCA of 6 and 1 is " + lca(6, 1));
    }
}


Python3




# Python3 implementation of the above approach
import math
 
# Pre-processing to calculate values of memo[][]
def dfs(u, p, memo, lev, log, g):
     
    # Using recursion formula to calculate
    # the values of memo[][]
    memo[u][0] = p
    for i in range(1, log + 1):
        memo[u][i] = memo[memo[u][i - 1]][i - 1]
         
    for v in g[u]:
        if v != p:
            lev[v] = lev[u] + 1
            dfs(v, u, memo, lev, log, g)
 
# Function to return the LCA of nodes u and v
def lca(u, v, log, lev, memo):
     
    # The node which is present farthest
    # from the root node is taken as u
    # If v is farther from root node
    # then swap the two
    if lev[u] < lev[v]:
        swap(u, v)
         
    # Finding the ancestor of u
    # which is at same level as v
    for i in range(log, -1, -1):
        if (lev[u] - pow(2, i)) >= lev[v]:
            u = memo[u][i]
             
    # If v is the ancestor of u
    # then v is the LCA of u and v        
    if u == v:
        return v
         
    # Finding the node closest to the
    # root which is not the common ancestor
    # of u and v i.e. a node x such that x
    # is not the common ancestor of u
    # and v but memo[x][0] is
    for i in range(log, -1, -1):
        if memo[u][i] != memo[v][i]:
            u = memo[u][i]
            v = memo[v][i]
     
    # Returning the first ancestor
    # of above found node        
    return memo[u][0]
 
# Driver code
 
# Number of nodes
n = 9
 
log = math.ceil(math.log(n, 2))
g = [[] for i in range(n + 1)]
 
memo = [[-1 for i in range(log + 1)]
            for j in range(n + 1)]
 
# Stores the level of each node            
lev = [0 for i in range(n + 1)]
 
# Add edges
g[1].append(2)
g[2].append(1)
g[1].append(3)
g[3].append(1)
g[1].append(4)
g[4].append(1)
g[2].append(5)
g[5].append(2)
g[3].append(6)
g[6].append(3)
g[3].append(7)
g[7].append(3)
g[3].append(8)
g[8].append(3)
g[4].append(9)
g[9].append(4)
 
dfs(1, 1, memo, lev, log, g)
 
print("The LCA of 6 and 9 is", lca(6, 9, log, lev, memo))
print("The LCA of 5 and 9 is", lca(5, 9, log, lev, memo))
print("The LCA of 6 and 8 is", lca(6, 8, log, lev, memo))
print("The LCA of 6 and 1 is", lca(6, 1, log, lev, memo))
 
# This code is contributed by Bhaskar


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
    // List to store tree
    static List<int> []g;
    static int [,]memo;
    static int []lev;
    static int log;
 
    // Pre-processing to calculate
    // values of memo[,]
    static void dfs(int u, int p)
    {
 
        // Using recursion formula to
        // calculate the values of memo[,]
        memo[u, 0] = p;
        for (int i = 1; i <= log; i++)
            memo[u, i] = memo[memo[u, i - 1],
                                    i - 1];
        foreach (int v in g[u])
        {
            if (v != p)
            {
 
                // Calculating the level of each node
                lev[v] = lev[u] + 1;
                dfs(v, u);
            }
        }
    }
 
    // Function to return the LCA of
    // nodes u and v
    static int lca(int u, int v)
    {
        // The node which is present farthest
        // from the root node is taken as u
        // If v is farther from root node
        // then swap the two
        if (lev[u] < lev[v])
        {
            int temp = u;
            u = v;
            v = temp;
        }
 
        // Finding the ancestor of u
        // which is at same level as v
        for (int i = log; i >= 0; i--)
        {
            if ((lev[u] - (int)Math.Pow(2, i)) >= lev[v])
                u = memo[u, i];
        }
 
        // If v is the ancestor of u
        // then v is the LCA of u and v
        if (u == v)
            return u;
 
        // Finding the node closest to the root
        // which is not the common ancestor of
        // u and v i.e. a node x such that
        // x is not the common ancestor of u
        // and v but memo[x,0] is
        for (int i = log; i >= 0; i--)
        {
            if (memo[u, i] != memo[v, i])
            {
                u = memo[u, i];
                v = memo[v, i];
            }
        }
 
        // Returning the first ancestor
        // of above found node
        return memo[u, 0];
    }
 
    // Driver code
    public static void Main(String []args)
    {
 
        // Number of nodes
        int n = 9;
        g = new List<int>[n + 1];
 
        // log(n) with base 2
        log = (int)Math.Ceiling(Math.Log(n) / Math.Log(2));
        memo = new int[n + 1, log + 1];
 
        // Stores the level of each node
        lev = new int[n + 1];
 
        // Initialising memo values with -1
        for (int i = 0; i <= n; i++)
            for (int j = 0; j <= log; j++)
                memo[i, j] = -1;
        for (int i = 0; i <= n; i++)
            g[i] = new List<int>();
 
        // Add edges
        g[1].Add(2);
        g[2].Add(1);
        g[1].Add(3);
        g[3].Add(1);
        g[1].Add(4);
        g[4].Add(1);
        g[2].Add(5);
        g[5].Add(2);
        g[3].Add(6);
        g[6].Add(3);
        g[3].Add(7);
        g[7].Add(3);
        g[3].Add(8);
        g[8].Add(3);
        g[4].Add(9);
        g[9].Add(4);
        dfs(1, 1);
        Console.WriteLine("The LCA of 6 and 9 is " +
                                        lca(6, 9));
        Console.WriteLine("The LCA of 5 and 9 is " +
                                        lca(5, 9));
        Console.WriteLine("The LCA of 6 and 8 is " +
                                        lca(6, 8));
        Console.WriteLine("The LCA of 6 and 1 is " +
                                        lca(6, 1));
    }
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
 
    // JavaScript implementation of the approach
     
    // ArrayList to store tree
    let g;
    let memo, lev, log;
  
    // Pre-processing to calculate values of memo[][]
    function dfs(u, p)
    {
  
        // Using recursion formula to calculate
        // the values of memo[][]
        memo[u][0] = p;
        for (let i = 1; i <= log; i++)
            memo[u][i] = memo[memo[u][i - 1]][i - 1];
        for (let v = 0; v < g[u].length; v++) {
            if (g[u][v] != p) {
  
                // Calculating the level of each node
                lev[g[u][v]] = lev[u] + 1;
                dfs(g[u][v], u);
            }
        }
    }
  
    // Function to return the LCA of nodes u and v
    function lca(u, v)
    {
        // The node which is present farthest
        // from the root node is taken as u
        // If v is farther from root node
        // then swap the two
        if (lev[u] < lev[v]) {
            let temp = u;
            u = v;
            v = temp;
        }
  
        // Finding the ancestor of u
        // which is at same level as v
        for (let i = log; i >= 0; i--) {
            if ((lev[u] - Math.pow(2, i)) >= lev[v])
                u = memo[u][i];
        }
  
        // If v is the ancestor of u
        // then v is the LCA of u and v
        if (u == v)
            return u;
  
        // Finding the node closest to the root which is
        // not the common ancestor of u and v i.e. a node
        // x such that x is not the common ancestor of u
        // and v but memo[x][0] is
        for (let i = log; i >= 0; i--) {
            if (memo[u][i] != memo[v][i]) {
                u = memo[u][i];
                v = memo[v][i];
            }
        }
  
        // Returning the first ancestor
        // of above found node
        return memo[u][0];
    }
     
    // Number of nodes
    let n = 9;
    g = new Array(n + 1);
 
    // log(n) with base 2
    log = Math.ceil(Math.log(n) / Math.log(2));
    memo = new Array(n + 1);
 
    // Stores the level of each node
    lev = new Array(n + 1);
    lev.fill(0);
 
    // Initialising memo values with -1
    for (let i = 0; i <= n; i++)
    {
        memo[i] = new Array(log+1);
        for (let j = 0; j < log+1; j++)
        {
            memo[i][j] = -1;
        }
    }
    for (let i = 0; i <= n; i++)
      g[i] = [];
 
    // Add edges
    g[1].push(2);
    g[2].push(1);
    g[1].push(3);
    g[3].push(1);
    g[1].push(4);
    g[4].push(1);
    g[2].push(5);
    g[5].push(2);
    g[3].push(6);
    g[6].push(3);
    g[3].push(7);
    g[7].push(3);
    g[3].push(8);
    g[8].push(3);
    g[4].push(9);
    g[9].push(4);
    dfs(1, 1);
    document.write("The LCA of 6 and 9 is " + lca(6, 9) + "</br>");
    document.write("The LCA of 5 and 9 is " + lca(5, 9) + "</br>");
    document.write("The LCA of 6 and 8 is " + lca(6, 8) + "</br>");
    document.write("The LCA of 6 and 1 is " + lca(6, 1));
     
</script>


Output: 

The LCA of 6 and 9 is 1
The LCA of 5 and 9 is 1
The LCA of 6 and 8 is 3
The LCA of 6 and 1 is 1

 

Time Complexity: The time taken in pre-processing is O(NlogN) and every query takes O(logN) time. So the overall time complexity of the solution is O(NlogN)
Auxiliary Space: O(NlogN) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments