Given a matrix of size n x n, find the sum of the Zigzag sequence with the largest sum. A zigzag sequence starts from the top and ends at the bottom. Two consecutive elements of sequence cannot belong to the same column.
Examples:
Input : mat[][] = 3 1 2
4 8 5
6 9 7
Output : 18
Zigzag sequence is: 3->8->7
Another such sequence is 2->4->7
Input : mat[][] = 4 2 1
3 9 6
11 3 15
Output : 28
This problem has an Optimal Substructure.
Maximum Zigzag sum starting from arr[i][j] to a
bottom cell can be written as :
zzs(i, j) = arr[i][j] + max(zzs(i+1, k)),
where k = 0, 1, 2 and k != j
zzs(i, j) = arr[i][j], if i = n-1
We have to find the largest among all as
Result = zzs(0, j) where 0 <= j < n
Implementation:
C++
// C++ program to find the largest sum zigzag sequence #include <bits/stdc++.h> using namespace std; const int MAX = 100; // Returns largest sum of a Zigzag sequence starting // from (i, j) and ending at a bottom cell. int largestZigZagSumRec( int mat[][MAX], int i, int j, int n) { // If we have reached bottom if (i == n-1) return mat[i][j]; // Find the largest sum by considering all // possible next elements in sequence. int zzs = 0; for ( int k=0; k<n; k++) if (k != j) zzs = max(zzs, largestZigZagSumRec(mat, i+1, k, n)); return zzs + mat[i][j]; } // Returns largest possible sum of a Zigzag sequence // starting from top and ending at bottom. int largestZigZag( int mat[][MAX], int n) { // Consider all cells of top row as starting point int res = 0; for ( int j=0; j<n; j++) res = max(res, largestZigZagSumRec(mat, 0, j, n)); return res; } // Driver program to test above int main() { int n = 3; int mat[][MAX] = { {4, 2, 1}, {3, 9, 6}, {11, 3, 15}}; cout << "Largest zigzag sum: " << largestZigZag(mat, n); return 0; } |
Java
// Java program to find the largest sum // zigzag sequence import java.io.*; class GFG { static int MAX = 100 ; // Returns largest sum of a Zigzag // sequence starting from (i, j) // and ending at a bottom cell. static int largestZigZagSumRec( int mat[][], int i, int j, int n) { // If we have reached bottom if (i == n- 1 ) return mat[i][j]; // Find the largest sum by considering all // possible next elements in sequence. int zzs = 0 ; for ( int k= 0 ; k<n; k++) if (k != j) zzs = Math.max(zzs, largestZigZagSumRec(mat, i+ 1 , k, n)); return zzs + mat[i][j]; } // Returns largest possible sum of a Zigzag // sequence starting from top and ending // at bottom. static int largestZigZag( int mat[][], int n) { // Consider all cells of top row as starting // point int res = 0 ; for ( int j= 0 ; j<n; j++) res = Math.max(res, largestZigZagSumRec(mat, 0 , j, n)); return res; } // Driver program to test above public static void main (String[] args) { int n = 3 ; int mat[][] = { { 4 , 2 , 1 }, { 3 , 9 , 6 }, { 11 , 3 , 15 } }; System.out.println( "Largest zigzag sum: " + largestZigZag(mat, n)); } } // This code is contributed by anuj_67. |
Python 3
# Python3 program to find the largest # sum zigzag sequence MAX = 100 # Returns largest sum of a Zigzag # sequence starting from (i, j) and # ending at a bottom cell. def largestZigZagSumRec( mat, i, j, n): # If we have reached bottom if (i = = n - 1 ): return mat[i][j] # Find the largest sum by considering all # possible next elements in sequence. zzs = 0 for k in range (n): if (k ! = j): zzs = max (zzs, largestZigZagSumRec(mat, i + 1 , k, n)) return zzs + mat[i][j] # Returns largest possible sum of a # Zigzag sequence starting from top # and ending at bottom. def largestZigZag(mat, n): # Consider all cells of top row as # starting point res = 0 for j in range (n): res = max (res, largestZigZagSumRec(mat, 0 , j, n)) return res # Driver Code if __name__ = = "__main__" : n = 3 mat = [ [ 4 , 2 , 1 ], [ 3 , 9 , 6 ], [ 11 , 3 , 15 ]] print ( "Largest zigzag sum: " , largestZigZag(mat, n)) # This code is contributed by ChitraNayal |
C#
// C# program to find the largest sum // zigzag sequence using System; class GFG { // static int MAX = 100; // Returns largest sum of a Zigzag // sequence starting from (i, j) // and ending at a bottom cell. static int largestZigZagSumRec( int [,]mat, int i, int j, int n) { // If we have reached bottom if (i == n-1) return mat[i,j]; // Find the largest sum by considering all // possible next elements in sequence. int zzs = 0; for ( int k = 0; k < n; k++) if (k != j) zzs = Math.Max(zzs, largestZigZagSumRec(mat, i + 1, k, n)); return zzs + mat[i,j]; } // Returns largest possible // sum of a Zigzag sequence // starting from top and ending // at bottom. static int largestZigZag( int [,]mat, int n) { // Consider all cells of // top row as starting // point int res = 0; for ( int j = 0; j < n; j++) res = Math.Max(res, largestZigZagSumRec(mat, 0, j, n)); return res; } // Driver Code public static void Main () { int n = 3; int [,]mat = {{4, 2, 1}, {3, 9, 6}, {11, 3, 15}}; Console.WriteLine( "Largest zigzag sum: " + largestZigZag(mat, n)); } } // This code is contributed by anuj_67. |
Javascript
<script> // Javascript program to find the largest sum // zigzag sequence let MAX = 100; // Returns largest sum of a Zigzag // sequence starting from (i, j) // and ending at a bottom cell. function largestZigZagSumRec(mat,i,j,n) { // If we have reached bottom if (i == n-1) return mat[i][j]; // Find the largest sum by considering all // possible next elements in sequence. let zzs = 0; for (let k=0; k<n; k++) if (k != j) zzs = Math.max(zzs, largestZigZagSumRec(mat, i+1, k, n)); return zzs + mat[i][j]; } // Returns largest possible sum of a Zigzag // sequence starting from top and ending // at bottom. function largestZigZag(mat,n) { // Consider all cells of top row as starting // point let res = 0; for (let j=0; j<n; j++) res = Math.max(res, largestZigZagSumRec(mat, 0, j, n)); return res; } // Driver program to test above let n = 3; let mat = [ [4, 2, 1], [3, 9, 6], [11, 3, 15]]; document.write( "Largest zigzag sum: " + largestZigZag(mat, n)) // This code is contributed by rag2127 </script> |
PHP
<?php // PHP program to find the // largest sum zigzag sequence $MAX = 100; // Returns largest sum of a // Zigzag sequence starting // from (i, j) and ending at // a bottom cell. function largestZigZagSumRec( $mat , $i , $j , $n ) { // If we have reached bottom if ( $i == $n - 1) return $mat [ $i ][ $j ]; // Find the largest sum // by considering all // possible next elements // in sequence. $zzs = 0; for ( $k = 0; $k < $n ; $k ++) if ( $k != $j ) $zzs = max( $zzs , largestZigZagSumRec( $mat , $i + 1, $k , $n )); return $zzs + $mat [ $i ][ $j ]; } // Returns largest possible // sum of a Zigzag sequence // starting from top and // ending at bottom. function largestZigZag( $mat , $n ) { // Consider all cells of top // row as starting point $res = 0; for ( $j = 0; $j < $n ; $j ++) $res = max( $res , largestZigZagSumRec( $mat , 0, $j , $n )); return $res ; } // Driver Code $n = 3; $mat = array ( array (4, 2, 1), array (3, 9, 6), array (11, 3, 15)); echo "Largest zigzag sum: " , largestZigZag( $mat , $n ); // This code is contributed by anuj_67. ?> |
Largest zigzag sum: 28
Time complexity: O(n^2)
We need to traverse the entire matrix to find the largest zigzag sum. The outer loop iterates over all the elements of the first row, and the inner loop calls the recursive function for each element in the first row. The recursive function then traverses the matrix in a zigzag fashion and finds the largest sum. Therefore the time complexity of this algorithm is O(n^2), where n represents the number of rows in the matrix.
Space complexity: O(n)
We need to store the intermediate results of the recursive calls in order to avoid recomputing them. Therefore, the space complexity of this algorithm is O(n), where n represents the number of rows in the matrix.
Overlapping Subproblems
Considering the above implementation, for a matrix mat[][] of size 3 x 3, to find the zigzag sum(zzs) for an element mat(i,j), the following recursion tree is formed.
Recursion tree for cell (0, 0)
zzs(0,0)
/ \
zzs(1,1) zzs(1,2)
/ \ / \
zzs(2,0) zzs(2,2) zzs(2,0) zzs(2,1)
Recursion tree for cell (0, 1)
zzs(0,1)
/ \
zzs(1,0) zzs(1,2)
/ \ / \
zzs(2,1) zzs(2,2) zzs(2,0) zzs(2,1)
Recursion tree for cell (0, 2)
zzs(0,2)
/ \
zzs(1,0) zzs(1,1)
/ \ / \
zzs(2,1) zzs(2,2) zzs(2,0) zzs(2,2)
We can see that there are many subproblems that are solved again and again. So this problem has Overlapping Substructure property and recomputation of same subproblems can be avoided by either using Memoization or Tabulation. Following is a tabulated implementation for the LIS problem.
Implementation:
C++
// Memoization based C++ program to find the largest // sum zigzag sequence #include <bits/stdc++.h> using namespace std; const int MAX = 100; int dp[MAX][MAX]; // Returns largest sum of a Zigzag sequence starting // from (i, j) and ending at a bottom cell. int largestZigZagSumRec( int mat[][MAX], int i, int j, int n) { if (dp[i][j] != -1) return dp[i][j]; // If we have reached bottom if (i == n-1) return (dp[i][j] = mat[i][j]); // Find the largest sum by considering all // possible next elements in sequence. int zzs = 0; for ( int k=0; k<n; k++) if (k != j) zzs = max(zzs, largestZigZagSumRec(mat, i+1, k, n)); return (dp[i][j] = (zzs + mat[i][j])); } // Returns largest possible sum of a Zigzag sequence // starting from top and ending at bottom. int largestZigZag( int mat[][MAX], int n) { memset (dp, -1, sizeof (dp)); // Consider all cells of top row as starting point int res = 0; for ( int j=0; j<n; j++) res = max(res, largestZigZagSumRec(mat, 0, j, n)); return res; } // Driver program to test above int main() { int n = 3; int mat[][MAX] = { {4, 2, 1}, {3, 9, 6}, {11, 3, 15}}; cout << "Largest zigzag sum: " << largestZigZag(mat, n); return 0; } |
Java
// Memoization based Java program to find the largest // sum zigzag sequence class GFG { static int MAX = 100 ; static int [][]dp = new int [MAX][MAX]; // Returns largest sum of a Zigzag sequence starting // from (i, j) and ending at a bottom cell. static int largestZigZagSumRec( int mat[][], int i, int j, int n) { if (dp[i][j] != - 1 ) return dp[i][j]; // If we have reached bottom if (i == n - 1 ) return (dp[i][j] = mat[i][j]); // Find the largest sum by considering all // possible next elements in sequence. int zzs = 0 ; for ( int k = 0 ; k < n; k++) if (k != j) zzs = Math.max(zzs, largestZigZagSumRec(mat, i + 1 , k, n)); return (dp[i][j] = (zzs + mat[i][j])); } // Returns largest possible sum of a Zigzag sequence // starting from top and ending at bottom. static int largestZigZag( int mat[][], int n) { for ( int i = 0 ; i < MAX; i++) for ( int k = 0 ; k < MAX; k++) dp[i][k] = - 1 ; // Consider all cells of top row as starting point int res = 0 ; for ( int j = 0 ; j < n; j++) res = Math.max(res, largestZigZagSumRec(mat, 0 , j, n)); return res; } // Driver code public static void main(String[] args) { int n = 3 ; int mat[][] = { { 4 , 2 , 1 }, { 3 , 9 , 6 }, { 11 , 3 , 15 }}; System.out.print( "Largest zigzag sum: " + largestZigZag(mat, n)); } } // This code is contributed by PrinciRaj1992 |
Python3
# Memoization based Python3 program to find the largest # sum zigzag sequence MAX = 100 ; dp = [[ 0 for i in range ( MAX )] for j in range ( MAX )] # Returns largest sum of a Zigzag sequence starting # from (i, j) and ending at a bottom cell. def largestZigZagSumRec(mat, i, j, n): if (dp[i][j] ! = - 1 ): return dp[i][j]; # If we have reached bottom if (i = = n - 1 ): dp[i][j] = mat[i][j]; return (dp[i][j]); # Find the largest sum by considering all # possible next elements in sequence. zzs = 0 ; for k in range (n): if (k ! = j): zzs = max (zzs, largestZigZagSumRec(mat, i + 1 , k, n)); dp[i][j] = (zzs + mat[i][j]); return (dp[i][j]); # Returns largest possible sum of a Zigzag sequence # starting from top and ending at bottom. def largestZigZag(mat, n): for i in range ( MAX ): for k in range ( MAX ): dp[i][k] = - 1 ; # Consider all cells of top row as starting point res = 0 ; for j in range (n): res = max (res, largestZigZagSumRec(mat, 0 , j, n)); return res; # Driver code if __name__ = = '__main__' : n = 3 ; mat = [[ 4 , 2 , 1 ], [ 3 , 9 , 6 ], [ 11 , 3 , 15 ]]; print ( "Largest zigzag sum: " , largestZigZag(mat, n)); # This code is contributed by Rajput-Ji |
C#
// Memoization based C# program to find the largest // sum zigzag sequence using System; class GFG { static int MAX = 100; static int [,]dp = new int [MAX, MAX]; // Returns largest sum of a Zigzag sequence starting // from (i, j) and ending at a bottom cell. static int largestZigZagSumRec( int [,]mat, int i, int j, int n) { if (dp[i, j] != -1) return dp[i, j]; // If we have reached bottom if (i == n - 1) return (dp[i, j] = mat[i, j]); // Find the largest sum by considering all // possible next elements in sequence. int zzs = 0; for ( int k = 0; k < n; k++) if (k != j) zzs = Math.Max(zzs, largestZigZagSumRec(mat, i + 1, k, n)); return (dp[i, j] = (zzs + mat[i, j])); } // Returns largest possible sum of a Zigzag sequence // starting from top and ending at bottom. static int largestZigZag( int [,]mat, int n) { for ( int i = 0; i < MAX; i++) for ( int k = 0; k < MAX; k++) dp[i, k] = -1; // Consider all cells of top row as starting point int res = 0; for ( int j = 0; j < n; j++) res = Math.Max(res, largestZigZagSumRec(mat, 0, j, n)); return res; } // Driver code public static void Main(String[] args) { int n = 3; int [,]mat = { {4, 2, 1}, {3, 9, 6}, {11, 3, 15}}; Console.Write( "Largest zigzag sum: " + largestZigZag(mat, n)); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // Memoization based Javascript program to find the largest // sum zigzag sequence let MAX = 100; let dp= new Array(MAX); // Returns largest sum of a Zigzag sequence starting // from (i, j) and ending at a bottom cell. function largestZigZagSumRec(mat,i,j,n) { if (dp[i][j] != -1) return dp[i][j]; // If we have reached bottom if (i == n - 1) return (dp[i][j] = mat[i][j]); // Find the largest sum by considering all // possible next elements in sequence. let zzs = 0; for (let k = 0; k < n; k++) if (k != j) zzs = Math.max(zzs, largestZigZagSumRec(mat, i + 1, k, n)); return (dp[i][j] = (zzs + mat[i][j])); } // Returns largest possible sum of a Zigzag sequence // starting from top and ending at bottom. function largestZigZag(mat,n) { for (let i = 0; i < MAX; i++) { dp[i]= new Array(MAX); for (let k = 0; k < MAX; k++) dp[i][k] = -1; } // Consider all cells of top row as starting point let res = 0; for (let j = 0; j < n; j++) res = Math.max(res, largestZigZagSumRec(mat, 0, j, n)); return res; } // Driver code let n = 3; let mat=[[4, 2, 1],[3, 9, 6],[11, 3, 15]]; document.write( "Largest zigzag sum: " + largestZigZag(mat, n)); // This code is contributed by avanitrachhadiya2155 </script> |
Largest zigzag sum: 28
Time Complexity: O(Max*MAX)
Auxiliary Space: O(Max*MAX)
Efficient approach: Using DP Tabulation method ( Iterative approach )
The approach to solve this problem is same but DP tabulation(bottom-up) method is better then Dp + memoization(top-down) because memoization method needs extra stack space of recursion calls.
Steps to solve this problem :
- Create a dp matrix to store the solution of the subproblems and initialize it with 0.
- Initialize base cases by updating values of last row values of dp.
- Now Iterate over subproblems to get the value of current problem form previous computation of subproblems stored in dp
- Initialize a variable res to store the final answer and update it by traversing over dp.
- At last return and print res.
Implementation :
C++
#include <bits/stdc++.h> using namespace std; const int MAX = 100; int dp[MAX][MAX]; // Returns largest possible sum of a Zigzag sequence // starting from top and ending at bottom. int largestZigZag( int mat[][MAX], int n) { memset (dp, 0, sizeof (dp)); // Initialize the last row with the values from the // matrix for ( int j = 0; j < n; j++) { dp[n - 1][j] = mat[n - 1][j]; } // Traverse the matrix in a bottom-up manner for ( int i = n - 2; i >= 0; i--) { for ( int j = 0; j < n; j++) { // Find the maximum sum by considering all // possible next elements for ( int k = 0; k < n; k++) { if (k != j) { dp[i][j] = max(dp[i][j], dp[i + 1][k]); } } dp[i][j] += mat[i][j]; } } // Find the maximum sum in the first row int res = 0; for ( int j = 0; j < n; j++) { res = max(res, dp[0][j]); } return res; } // Driver program to test above int main() { int n = 3; int mat[][MAX] = { { 4, 2, 1 }, { 3, 9, 6 }, { 11, 3, 15 } }; cout << "Largest zigzag sum: " << largestZigZag(mat, n); return 0; } // -- by bhardwajji |
Java
//Java program to find the largest // sum zigzag sequence public class LargestZigZag { private static final int MAX = 100 ; public static int largestZigZag( int [][] mat, int n) { // Create a 2D array to store intermediate results during dynamic programming int [][] dp = new int [MAX][MAX]; // Initialize the last row with the values from the matrix for ( int j = 0 ; j < n; j++) { dp[n - 1 ][j] = mat[n - 1 ][j]; } // Traverse the matrix in a bottom-up manner for ( int i = n - 2 ; i >= 0 ; i--) { for ( int j = 0 ; j < n; j++) { // Find the maximum sum by considering all possible next elements for ( int k = 0 ; k < n; k++) { if (k != j) { dp[i][j] = Math.max(dp[i][j], dp[i + 1 ][k]); } } dp[i][j] += mat[i][j]; } } // Find the maximum sum in the first row int res = 0 ; for ( int j = 0 ; j < n; j++) { res = Math.max(res, dp[ 0 ][j]); } return res; } //Driver Code public static void main(String[] args) { int n = 3 ; int [][] mat = {{ 4 , 2 , 1 }, { 3 , 9 , 6 }, { 11 , 3 , 15 }}; System.out.println( "Largest zigzag sum: " + largestZigZag(mat, n)); } } |
Python3
# Python3 program to find the largest # sum zigzag sequence MAX = 100 def largestZigZag(mat, n): # Returns largest possible sum of a Zigzag sequence dp = [[ 0 ] * MAX for _ in range ( MAX )] # Initialize the last row with the values from the matrix for j in range (n): dp[n - 1 ][j] = mat[n - 1 ][j] # Traverse the matrix in a bottom-up manner for i in range (n - 2 , - 1 , - 1 ): for j in range (n): # Find the maximum sum by considering all possible next elements for k in range (n): if k ! = j: dp[i][j] = max (dp[i][j], dp[i + 1 ][k]) dp[i][j] + = mat[i][j] # Find the maximum sum in the first row res = 0 for j in range (n): res = max (res, dp[ 0 ][j]) return res # Driver code if __name__ = = "__main__" : n = 3 mat = [[ 4 , 2 , 1 ], [ 3 , 9 , 6 ], [ 11 , 3 , 15 ]] print ( "Largest zigzag sum:" , largestZigZag(mat, n)) |
C#
using System; class GFG { const int MAX = 100; static int [, ] dp = new int [MAX, MAX]; // Returns largest possible sum of a Zigzag sequence // starting from top and ending at bottom. static int LargestZigZag( int [, ] mat, int n) { Array.Clear(dp, 0, dp.Length); // Initialize the last row with the values from the // matrix for ( int j = 0; j < n; j++) { dp[n - 1, j] = mat[n - 1, j]; } // Traverse the matrix in a bottom-up manner for ( int i = n - 2; i >= 0; i--) { for ( int j = 0; j < n; j++) { // Find the maximum sum by considering all // possible next elements for ( int k = 0; k < n; k++) { if (k != j) { dp[i, j] = Math.Max(dp[i, j], dp[i + 1, k]); } } dp[i, j] += mat[i, j]; } } // Find the maximum sum in the first row int res = 0; for ( int j = 0; j < n; j++) { res = Math.Max(res, dp[0, j]); } return res; } // Driver program to test above static void Main() { int n = 3; int [, ] mat = { { 4, 2, 1 }, { 3, 9, 6 }, { 11, 3, 15 } }; Console.WriteLine( "Largest zigzag sum: " + LargestZigZag(mat, n)); } } |
Javascript
const MAX = 100; function largestZigZag(mat, n) { const dp = new Array(n).fill(0).map(() => new Array(n).fill(0)); // Initialize the last row with the values from the matrix for (let j = 0; j < n; j++) { dp[n - 1][j] = mat[n - 1][j]; } // Traverse the matrix in a bottom-up manner for (let i = n - 2; i >= 0; i--) { for (let j = 0; j < n; j++) { // Find the maximum sum by considering all possible next elements for (let k = 0; k < n; k++) { if (k !== j) { dp[i][j] = Math.max(dp[i][j], dp[i + 1][k]); } } dp[i][j] += mat[i][j]; } } // Find the maximum sum in the first row let res = 0; for (let j = 0; j < n; j++) { res = Math.max(res, dp[0][j]); } return res; } const n = 3; const mat = [ [4, 2, 1], [3, 9, 6], [11, 3, 15] ]; console.log( "Largest zigzag sum:" , largestZigZag(mat, n)); |
Largest zigzag sum: 28
Time Complexity: O(Max*MAX)
Auxiliary Space: O(Max*MAX)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!