Sunday, January 12, 2025
Google search engine
HomeData Modelling & AILargest perfect cube number in an Array

Largest perfect cube number in an Array

Given an array of N integers. The task is to find the largest number which is a perfect cube. Print -1 if there is no number that is perfect cube.

Examples

Input : arr[] = {16, 8, 25, 2, 3, 10} 
Output : 25
Explanation: 25 is the largest number 
that is a perfect cube. 

Input : arr[] = {36, 64, 10, 16, 29, 25| 
Output : 64

A Simple Solution is to sort the elements and sort the N numbers and start checking from back for a perfect cube number using cbrt() function. The first number from the end which is a perfect cube number is our answer. The complexity of sorting is O(n log n) and of cbrt() function is log n, so at the worst case the complexity is O(n log n).

An Efficient Solution is to iterate for all the elements in O(n) and compare every time with the maximum element, and store the maximum of all perfect cubes.

Below is the implementation of the above approach: 

C++




// CPP program to find the largest perfect
// cube number among n numbers
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if a number
// is perfect cube number or not
bool checkPerfectcube(int n)
{
    // takes the sqrt of the number
    int d = cbrt(n);
 
    // checks if it is a perfect
    // cube number
    if (d * d * d == n)
        return true;
 
    return false;
}
 
// Function to find the largest perfect
// cube number in the array
int largestPerfectcubeNumber(int a[], int n)
{
    // stores the maximum of all
    // perfect cube numbers
    int maxi = -1;
 
    // Traverse all elements in the array
    for (int i = 0; i < n; i++) {
 
        // store the maximum if current
        // element is a perfect cube
        if (checkPerfectcube(a[i]))
            maxi = max(a[i], maxi);
    }
 
    return maxi;
}
 
// Driver Code
int main()
{
    int a[] = { 16, 64, 25, 2, 3, 10 };
 
    int n = sizeof(a) / sizeof(a[0]);
 
    cout << largestPerfectcubeNumber(a, n);
 
    return 0;
}


C




// C program to find the largest perfect
// cube number among n numbers
#include <stdio.h>
#include <math.h>
#include <stdbool.h>
 
int max(int a, int b)
{
  int max = a;
  if(max < b)
    max = b;
  return max;
}
 
// Function to check if a number
// is perfect cube number or not
bool checkPerfectcube(int n)
{
    // takes the sqrt of the number
    int d = cbrt(n);
 
    // checks if it is a perfect
    // cube number
    if (d * d * d == n)
        return true;
 
    return false;
}
 
// Function to find the largest perfect
// cube number in the array
int largestPerfectcubeNumber(int a[], int n)
{
    // stores the maximum of all
    // perfect cube numbers
    int maxi = -1;
 
    // Traverse all elements in the array
    for (int i = 0; i < n; i++) {
 
        // store the maximum if current
        // element is a perfect cube
        if (checkPerfectcube(a[i]))
            maxi = max(a[i], maxi);
    }
 
    return maxi;
}
 
// Driver Code
int main()
{
    int a[] = { 16, 64, 25, 2, 3, 10 };
 
    int n = sizeof(a) / sizeof(a[0]);
 
    printf("%d",largestPerfectcubeNumber(a, n));
 
    return 0;
}
 
// This code is contributed by kothavvsaakash.


Java




// Java program to find the largest perfect
// cube number among n numbers
class Solution
{
 
// Function to check if a number
// is perfect cube number or not
static boolean checkPerfectcube(int n)
{
    // takes the sqrt of the number
    int d =(int) Math.cbrt(n);
 
    // checks if it is a perfect
    // cube number
    if (d * d * d == n)
        return true;
 
    return false;
}
 
// Function to find the largest perfect
// cube number in the array
static int largestPerfectcubeNumber(int a[], int n)
{
    // stores the maximum of all
    // perfect cube numbers
    int maxi = -1;
 
    // Traverse all elements in the array
    for (int i = 0; i < n; i++) {
 
        // store the maximum if current
        // element is a perfect cube
        if (checkPerfectcube(a[i]))
            maxi = Math.max(a[i], maxi);
    }
 
    return maxi;
}
 
// Driver Code
public static void main(String args[])
{
    int a[] = { 16, 64, 25, 2, 3, 10 };
 
    int n =a.length;
 
    System.out.print(largestPerfectcubeNumber(a, n));
 
}
}
 
//contributed by Arnab Kundu


Python3




# Python 3 program to find the largest
# perfect cube number among n numbers
import math
 
# Function to check if a number
# is perfect cube number or not
def checkPerfectcube(n):
     
    # checks if it is a perfect
    # cube number
    cube_root = n**(1./3.)
    if round(cube_root) ** 3 == n:
        return True
         
    else:
        return False
 
# Function to find the largest perfect
# cube number in the array
def largestPerfectcubeNumber(a, n):
     
    # stores the maximum of all
    # perfect cube numbers
    maxi = -1
 
    # Traverse all elements in the array
    for i in range(0, n, 1):
         
        # store the maximum if current
        # element is a perfect cube
        if (checkPerfectcube(a[i])):
            maxi = max(a[i], maxi)
 
    return maxi;
 
# Driver Code
if __name__ == '__main__':
    a = [16, 64, 25, 2, 3, 10]
 
    n = len(a)
 
    print(largestPerfectcubeNumber(a, n))
 
# This code is contributed by
# Surendra_Gangwar


C#




//C# program to find the largest perfect
// cube number among n numbers
using System;
 
public class Solution
{
 
    // Function to check if a number
    // is perfect cube number or not
    static bool checkPerfectcube(int n)
    {
        // takes the sqrt of the number
        int d = (int)Math.Ceiling(Math.Pow(n, (double)1 / 3));
        // checks if it is a perfect
        // cube number
        if (d * d * d == n)
            return true;
 
        return false;
    }
 
    // Function to find the largest perfect
    // cube number in the array
    static int largestPerfectcubeNumber(int []a, int n)
    {
        // stores the maximum of all
        // perfect cube numbers
        int maxi = -1;
 
        // Traverse all elements in the array
        for (int i = 0; i < n; i++) {
 
            // store the maximum if current
            // element is a perfect cube
            if (checkPerfectcube(a[i]))
                maxi = Math.Max(a[i], maxi);
        }
 
        return maxi;
    }
 
    // Driver Code
    public static void Main()
    {
        int []a = { 16, 64, 25, 2, 3, 10 };
 
        int n =a.Length;
 
        Console.WriteLine(largestPerfectcubeNumber(a, n));
 
    }
}
 
/*This code is contributed by PrinciRaj1992*/


PHP




<?php
// PHP program to find the largest perfect
// cube number among n numbers
 
// Function to check if a number
// is perfect cube number or not
function checkPerfectcube($n)
{
    // takes the sqrt of the number
    $d = pow($n, (1 / 3));
    $d = round($d);
 
    // checks if it is a perfect
    // cube number
    if ($d * $d * $d == $n)
        return true;
 
    return false;
}
 
// Function to find the largest perfect
// cube number in the array
function largestPerfectcubeNumber(&$a, $n)
{
    // stores the maximum of all
    // perfect cube numbers
    $maxi = -1;
 
    // Traverse all elements in the array
    for ($i = 0; $i < $n; $i++)
    {
 
        // store the maximum if current
        // element is a perfect cube
        if (checkPerfectcube($a[$i]))
            $maxi = max($a[$i], $maxi);
    }
 
    return $maxi;
}
 
// Driver Code
$a = array( 16, 64, 25, 2, 3, 10 );
$n = sizeof($a);
echo largestPerfectcubeNumber($a, $n);
 
// This code is contributed by ita_c
?>


Javascript




<script>
 
// Javascript program to find the largest perfect
// cube number among n numbers
 
// Function to check if a number
// is perfect cube number or not
function checkPerfectcube(n)
{
    // takes the sqrt of the number
    let d = parseInt(Math.cbrt(n));
 
    // checks if it is a perfect
    // cube number
    if (d * d * d == n)
        return true;
 
    return false;
}
 
// Function to find the largest perfect
// cube number in the array
function largestPerfectcubeNumber(a, n)
{
    // stores the maximum of all
    // perfect cube numbers
    let maxi = -1;
 
    // Traverse all elements in the array
    for (let i = 0; i < n; i++) {
 
        // store the maximum if current
        // element is a perfect cube
        if (checkPerfectcube(a[i]))
            maxi = Math.max(a[i], maxi);
    }
 
    return maxi;
}
 
// Driver Code
let a = [ 16, 64, 25, 2, 3, 10 ];
 
let n = a.length;
 
document.write(largestPerfectcubeNumber(a, n));
 
</script>


Output

64

Time Complexity: O(NlogN)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments