Given an array of N integers. The task is to find the largest number which is a perfect cube. Print -1 if there is no number that is perfect cube.
Examples:
Input : arr[] = {16, 8, 25, 2, 3, 10} Output : 25 Explanation: 25 is the largest number that is a perfect cube. Input : arr[] = {36, 64, 10, 16, 29, 25| Output : 64
A Simple Solution is to sort the elements and sort the N numbers and start checking from back for a perfect cube number using cbrt() function. The first number from the end which is a perfect cube number is our answer. The complexity of sorting is O(n log n) and of cbrt() function is log n, so at the worst case the complexity is O(n log n).
An Efficient Solution is to iterate for all the elements in O(n) and compare every time with the maximum element, and store the maximum of all perfect cubes.
Below is the implementation of the above approach:
C++
// CPP program to find the largest perfect // cube number among n numbers #include <bits/stdc++.h> using namespace std; // Function to check if a number // is perfect cube number or not bool checkPerfectcube( int n) { // takes the sqrt of the number int d = cbrt(n); // checks if it is a perfect // cube number if (d * d * d == n) return true ; return false ; } // Function to find the largest perfect // cube number in the array int largestPerfectcubeNumber( int a[], int n) { // stores the maximum of all // perfect cube numbers int maxi = -1; // Traverse all elements in the array for ( int i = 0; i < n; i++) { // store the maximum if current // element is a perfect cube if (checkPerfectcube(a[i])) maxi = max(a[i], maxi); } return maxi; } // Driver Code int main() { int a[] = { 16, 64, 25, 2, 3, 10 }; int n = sizeof (a) / sizeof (a[0]); cout << largestPerfectcubeNumber(a, n); return 0; } |
C
// C program to find the largest perfect // cube number among n numbers #include <stdio.h> #include <math.h> #include <stdbool.h> int max( int a, int b) { int max = a; if (max < b) max = b; return max; } // Function to check if a number // is perfect cube number or not bool checkPerfectcube( int n) { // takes the sqrt of the number int d = cbrt(n); // checks if it is a perfect // cube number if (d * d * d == n) return true ; return false ; } // Function to find the largest perfect // cube number in the array int largestPerfectcubeNumber( int a[], int n) { // stores the maximum of all // perfect cube numbers int maxi = -1; // Traverse all elements in the array for ( int i = 0; i < n; i++) { // store the maximum if current // element is a perfect cube if (checkPerfectcube(a[i])) maxi = max(a[i], maxi); } return maxi; } // Driver Code int main() { int a[] = { 16, 64, 25, 2, 3, 10 }; int n = sizeof (a) / sizeof (a[0]); printf ( "%d" ,largestPerfectcubeNumber(a, n)); return 0; } // This code is contributed by kothavvsaakash. |
Java
// Java program to find the largest perfect // cube number among n numbers class Solution { // Function to check if a number // is perfect cube number or not static boolean checkPerfectcube( int n) { // takes the sqrt of the number int d =( int ) Math.cbrt(n); // checks if it is a perfect // cube number if (d * d * d == n) return true ; return false ; } // Function to find the largest perfect // cube number in the array static int largestPerfectcubeNumber( int a[], int n) { // stores the maximum of all // perfect cube numbers int maxi = - 1 ; // Traverse all elements in the array for ( int i = 0 ; i < n; i++) { // store the maximum if current // element is a perfect cube if (checkPerfectcube(a[i])) maxi = Math.max(a[i], maxi); } return maxi; } // Driver Code public static void main(String args[]) { int a[] = { 16 , 64 , 25 , 2 , 3 , 10 }; int n =a.length; System.out.print(largestPerfectcubeNumber(a, n)); } } //contributed by Arnab Kundu |
Python3
# Python 3 program to find the largest # perfect cube number among n numbers import math # Function to check if a number # is perfect cube number or not def checkPerfectcube(n): # checks if it is a perfect # cube number cube_root = n * * ( 1. / 3. ) if round (cube_root) * * 3 = = n: return True else : return False # Function to find the largest perfect # cube number in the array def largestPerfectcubeNumber(a, n): # stores the maximum of all # perfect cube numbers maxi = - 1 # Traverse all elements in the array for i in range ( 0 , n, 1 ): # store the maximum if current # element is a perfect cube if (checkPerfectcube(a[i])): maxi = max (a[i], maxi) return maxi; # Driver Code if __name__ = = '__main__' : a = [ 16 , 64 , 25 , 2 , 3 , 10 ] n = len (a) print (largestPerfectcubeNumber(a, n)) # This code is contributed by # Surendra_Gangwar |
C#
//C# program to find the largest perfect // cube number among n numbers using System; public class Solution { // Function to check if a number // is perfect cube number or not static bool checkPerfectcube( int n) { // takes the sqrt of the number int d = ( int )Math.Ceiling(Math.Pow(n, ( double )1 / 3)); // checks if it is a perfect // cube number if (d * d * d == n) return true ; return false ; } // Function to find the largest perfect // cube number in the array static int largestPerfectcubeNumber( int []a, int n) { // stores the maximum of all // perfect cube numbers int maxi = -1; // Traverse all elements in the array for ( int i = 0; i < n; i++) { // store the maximum if current // element is a perfect cube if (checkPerfectcube(a[i])) maxi = Math.Max(a[i], maxi); } return maxi; } // Driver Code public static void Main() { int []a = { 16, 64, 25, 2, 3, 10 }; int n =a.Length; Console.WriteLine(largestPerfectcubeNumber(a, n)); } } /*This code is contributed by PrinciRaj1992*/ |
PHP
<?php // PHP program to find the largest perfect // cube number among n numbers // Function to check if a number // is perfect cube number or not function checkPerfectcube( $n ) { // takes the sqrt of the number $d = pow( $n , (1 / 3)); $d = round ( $d ); // checks if it is a perfect // cube number if ( $d * $d * $d == $n ) return true; return false; } // Function to find the largest perfect // cube number in the array function largestPerfectcubeNumber(& $a , $n ) { // stores the maximum of all // perfect cube numbers $maxi = -1; // Traverse all elements in the array for ( $i = 0; $i < $n ; $i ++) { // store the maximum if current // element is a perfect cube if (checkPerfectcube( $a [ $i ])) $maxi = max( $a [ $i ], $maxi ); } return $maxi ; } // Driver Code $a = array ( 16, 64, 25, 2, 3, 10 ); $n = sizeof( $a ); echo largestPerfectcubeNumber( $a , $n ); // This code is contributed by ita_c ?> |
Javascript
<script> // Javascript program to find the largest perfect // cube number among n numbers // Function to check if a number // is perfect cube number or not function checkPerfectcube(n) { // takes the sqrt of the number let d = parseInt(Math.cbrt(n)); // checks if it is a perfect // cube number if (d * d * d == n) return true ; return false ; } // Function to find the largest perfect // cube number in the array function largestPerfectcubeNumber(a, n) { // stores the maximum of all // perfect cube numbers let maxi = -1; // Traverse all elements in the array for (let i = 0; i < n; i++) { // store the maximum if current // element is a perfect cube if (checkPerfectcube(a[i])) maxi = Math.max(a[i], maxi); } return maxi; } // Driver Code let a = [ 16, 64, 25, 2, 3, 10 ]; let n = a.length; document.write(largestPerfectcubeNumber(a, n)); </script> |
64
Time Complexity: O(NlogN)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!