Sunday, October 12, 2025
HomeData Modelling & AILargest number up to N whose modulus with X is equal to...

Largest number up to N whose modulus with X is equal to Y modulo X

Given three positive integers X, Y, and N, such that Y < X, the task is to find the largest number from the range [0, N] whose modulus with X is equal to Y modulo X.

Examples:

Input: X = 10, Y = 5, N = 15
Output: 15
Explanation:
The value of 15 % 10 (= 5) and 5 % 10 (= 5) are equal.
Therefore, the required output is 15.

Input: X = 5, Y = 0, N = 4
Output: 0

Approach: The given problem can be solved based on the following observations:

  • Since Y is less than X, then Y % X must be Y. Therefore, the idea is to find the maximum value from the range [0, N] whose modulus with X is Y.
  • Assume the maximum number, say num = N, to get the remainder modulo with X as Y.
  • Subtract N with the remainder of N % X to get the remainder as 0, and then add Y to it. Then, the remainder of that number with X will be Y.
  • Check if the number is less than N. If found to be true, then set num =  (N – N % X + Y).
  • Otherwise, again subtract the number with the value of X, i.e., num = (N – N % X – (X – Y)), to get the maximum value from the interval [0, N].
  • Mathematically:
    • If (N – N % X + Y) ? N, then set num = (N – N % X + Y).
    • Otherwise, update num = (N – N % X – (X – Y)).

Follow the steps below to solve the problem:

  • Initialize a variable, say num, to store the maximum number that has the remainder Y % X from the range [0, N].
  • If (N – N % X + Y) ? N, then update num = (N – N % X + Y).
  • Otherwise, update num = (N – N % X – (X – Y)).
  • After completing the above steps, print the value of num as the result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the largest
// number upto N whose modulus
// with X is same as Y % X
long long maximumNum(long long X,
                     long long Y,
                     long long N)
{
    // Stores the required number
    long long num = 0;
 
    // Update num as the result
    if (N - N % X + Y <= N) {
 
        num = N - N % X + Y;
    }
    else {
        num = N - N % X - (X - Y);
    }
 
    // Return the resultant number
    return num;
}
 
// Driver Code
int main()
{
    long long X = 10;
    long long Y = 5;
    long long N = 15;
 
    cout << maximumNum(X, Y, N);
 
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG
{
 
  // Function to print the largest
  // number upto N whose modulus
  // with X is same as Y % X
  static long maximumNum(long X, long Y, long N)
  {
     
    // Stores the required number
    long num = 0;
 
    // Update num as the result
    if (N - N % X + Y <= N)
    {
      num = N - N % X + Y;
    }
    else
    {
      num = N - N % X - (X - Y);
    }
 
    // Return the resultant number
    return num;
  }
 
  // Driver Code
  public static void main(String[] args)
  {
 
    long X = 10;
    long Y = 5;
    long N = 15;
 
    System.out.println(maximumNum(X, Y, N));
  }
}
 
// This code is contributed by Kingash.


Python3




# Python3 program for the above approach
 
# Function to print the largest
# number upto N whose modulus
# with X is same as Y % X
def maximumNum(X, Y, N):
   
    # Stores the required number
    num = 0
 
    # Update num as the result
    if (N - N % X + Y <= N):
        num = N - N % X + Y
    else:
        num = N - N % X - (X - Y)
 
    # Return the resultant number
    return num
 
# Driver Code
if __name__ == '__main__':
    X = 10
    Y = 5
    N = 15
 
    print (maximumNum(X, Y, N))
 
# This code is contributed by mohit kumar 29.


C#




// C# program for the above approach
using System;
class GFG {
 
  // Function to print the largest
  // number upto N whose modulus
  // with X is same as Y % X
  static long maximumNum(long X, long Y, long N)
  {
 
    // Stores the required number
    long num = 0;
 
    // Update num as the result
    if (N - N % X + Y <= N) {
      num = N - N % X + Y;
    }
    else {
      num = N - N % X - (X - Y);
    }
 
    // Return the resultant number
    return num;
  }
 
  // Driver Code
  public static void Main(string[] args)
  {
 
    long X = 10;
    long Y = 5;
    long N = 15;
 
    Console.WriteLine(maximumNum(X, Y, N));
  }
}
 
// This code is contributed by ukasp.


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to print the largest
// number upto N whose modulus
// with X is same as Y % X
function maximumNum(X, Y, N)
{
 
    // Stores the required number
    let num = 0;
     
    // Update num as the result
    if (N - N % X + Y <= N)
    {
        num = N - N % X + Y;
    }
    else
    {
        num = N - N % X - (X - Y);
    }
     
    // Return the resultant number
    return num;
}
 
// Driver code
let X = 10;
let Y = 5;
let N = 15;
 
document.write(maximumNum(X, Y, N));
 
// This code is contributed by target_2 
 
</script>


Output: 

15

 

Time Complexity: O(1)
Auxiliary Space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32353 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6721 POSTS0 COMMENTS
Nicole Veronica
11885 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11943 POSTS0 COMMENTS
Shaida Kate Naidoo
6841 POSTS0 COMMENTS
Ted Musemwa
7105 POSTS0 COMMENTS
Thapelo Manthata
6797 POSTS0 COMMENTS
Umr Jansen
6798 POSTS0 COMMENTS