Thursday, January 9, 2025
Google search engine
HomeData Modelling & AILargest K digit number divisible by all numbers in given array

Largest K digit number divisible by all numbers in given array

Given an array arr[] of size N and an integer K. The task is to find the largest K digit number divisible by all number of arr[].

Examples:

Input: arr[] = {2, 3, 5}, K = 3
Output: 990
Explanation: 990 is the largest 3 digit number divisible by 2, 3 and 5.

Input: arr[] = {91, 93, 95}, K = 3
Output: -1
Explanation: There is no 3 digit number divisible by all 91, 93 and 95.

 

Approach: The solution is based on the idea similar to finding largest K digit number divisible by X. Follow the steps mentioned below.

LCM(arr) * ((10K-1)/LCM(arr))

Below is the implementation of the above approach.

C++




// C++ code to implement above approach
#include <bits/stdc++.h>
using namespace std;
 
   int __gcd(int a, int b)
   {
 
    // Everything divides 0
    if (a == 0)
      return b;
    if (b == 0)
      return a;
 
    // Base case
    if (a == b)
      return a;
 
    // a is greater
    if (a > b)
      return __gcd(a - b, b);
 
    return __gcd(a, b - a);
   }
 
  // Function to find LCM of the array
  int findLCM(int arr[], int n, int idx)
  {
 
    // lcm(a, b) = (a*b / gcd(a, b))
    if (idx == n - 1)
    {
      return arr[idx];
    }
    int a = arr[idx];
    int b = findLCM(arr, n, idx + 1);
 
    double gcd = __gcd(a, b);
 
    return (a * (int)floor(b / gcd));
  }
 
  // Function to find the number
  int findNum(int arr[], int n, int K)
  {
    int  lcm = findLCM(arr, n, 0);
    int ans = (int)floor((pow(10, K) - 1) / lcm);
    ans = (ans) * lcm;
 
    if (ans == 0)
      return -1;
 
    return ans;
  }
 
  // Driver code
  int main()
  {
    int arr[] = { 2, 3, 5 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int K = 3;
 
    cout << findNum(arr, n, K);
  }
 
// This code is contributed by Samim Hossain Mondal.


Java




// Java code to implement above approach
class GFG
{
  static int __gcd(int a, int b)
  {
 
    // Everything divides 0
    if (a == 0)
      return b;
    if (b == 0)
      return a;
 
    // Base case
    if (a == b)
      return a;
 
    // a is greater
    if (a > b)
      return __gcd(a - b, b);
 
    return __gcd(a, b - a);
  }
 
  // Function to find LCM of the array
  static int findLCM(int []arr, int idx)
  {
 
    // lcm(a, b) = (a*b / gcd(a, b))
    if (idx == arr.length - 1)
    {
      return arr[idx];
    }
    int a = arr[idx];
    int b = findLCM(arr, idx + 1);
 
    double gcd = __gcd(a, b);
 
    return (a * (int)Math.floor(b / gcd));
  }
 
  // Function to find the number
  static int findNum(int []arr, int K)
  {
    int  lcm = findLCM(arr, 0);
    int ans = (int)Math.floor((Math.pow(10, K) - 1) / lcm);
    ans = (ans) * lcm;
 
    if (ans == 0)
      return -1;
 
    return ans;
  }
 
  // Driver code
  public static void main(String []args)
  {
    int []arr = { 2, 3, 5 };
    int K = 3;
 
    System.out.println(findNum(arr, K));
  }
}
 
// This code is contributed by 29AjayKumar


Python3




# python code to implement above approach
import math
 
# Function to find LCM of the array
def findLCM(arr, idx):
 
    # lcm(a, b) = (a*b / gcd(a, b))
    if (idx == len(arr) - 1):
        return arr[idx]
 
    a = arr[idx]
    b = findLCM(arr, idx + 1)
    return (a * b // math.gcd(a, b))
 
# Function to find the number
def findNum(arr, K):
 
    lcm = findLCM(arr, 0)
    ans = (pow(10, K) - 1) // lcm
    ans = (ans)*lcm
    if (ans == 0):
        return -1
    return ans
 
# Driver code
if __name__ == "__main__":
 
    arr = [2, 3, 5]
    K = 3
    print(findNum(arr, K))
 
# This code is contributed by rakeshsahni


C#




// C# code to implement above approach
using System;
using System.Collections;
class GFG
{
static int __gcd(int a, int b)
{
     
    // Everything divides 0
    if (a == 0)
        return b;
    if (b == 0)
        return a;
 
    // Base case
    if (a == b)
        return a;
 
    // a is greater
    if (a > b)
        return __gcd(a - b, b);
         
    return __gcd(a, b - a);
}
 
// Function to find LCM of the array
static int findLCM(int []arr, int idx)
{
     
    // lcm(a, b) = (a*b / gcd(a, b))
    if (idx == arr.Length - 1)
    {
        return arr[idx];
    }
    int a = arr[idx];
    int b = findLCM(arr, idx + 1);
     
    double gcd = __gcd(a, b);
     
    return (a * (int)Math.Floor(b / gcd));
}
 
// Function to find the number
static int findNum(int []arr, int K)
{
    int  lcm = findLCM(arr, 0);
    int ans = (int)Math.Floor((Math.Pow(10, K) - 1) / lcm);
    ans = (ans) * lcm;
     
    if (ans == 0)
        return -1;
         
    return ans;
}
 
// Driver code
public static void Main()
{
int []arr = { 2, 3, 5 };
int K = 3;
 
Console.Write(findNum(arr, K));
}
}
 
// This code is contributed by Samim Hossain Mondal.


Javascript




<script>
 
// JavaScript code to implement above approach
function __gcd(a, b)
{
     
    // Everything divides 0
    if (a == 0)
        return b;
    if (b == 0)
        return a;
 
    // Base case
    if (a == b)
        return a;
 
    // a is greater
    if (a > b)
        return __gcd(a - b, b);
         
    return __gcd(a, b - a);
}
 
// Function to find LCM of the array
function findLCM(arr, idx)
{
     
    // lcm(a, b) = (a*b / gcd(a, b))
    if (idx == arr.length - 1)
    {
        return arr[idx];
    }
    let a = arr[idx];
    let b = findLCM(arr, idx + 1);
    return Math.floor((a * b / __gcd(a, b)));
}
 
// Function to find the number
function findNum(arr, K)
{
    let lcm = findLCM(arr, 0);
    let ans = Math.floor((Math.pow(10, K) - 1) / lcm);
    ans = (ans) * lcm;
     
    if (ans == 0)
        return -1;
         
    return ans;
}
 
// Driver code
let arr = [ 2, 3, 5 ];
let K = 3;
 
document.write(findNum(arr, K));
 
// This code is contributed by Potta Lokesh
 
</script>


Output

990

Time Complexity: O(N*logD) where D is the maximum element of the array
Auxiliary Space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
15 Dec, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments