Given an array arr[] of N elements and Q queries of the form [X]. For each query, the task is to find the largest interval [L, R] of the array such that the greatest element in the interval is arr[X], such that 1 ? L ? X ? R.
Note: The array has 1-based indexing.
Examples:
Input: N = 5, arr[] = {2, 1, 2, 3, 2}, Q = 3, query[] = {1, 2, 4}
Output:
[1, 3]
[2, 2]
[1, 5]
Explanation :
In 1st query, x = 1, so arr[x] = 2 and answer is L = 1 and R = 3. here, we can see that max(arr[1], arr[2], arr[3]) = arr[x], which is the maximum intervals.
In 2nd query, x = 2, so arr[x] = 1 and since it is the smallest element of the array, so the interval contains only one element, thus the range is [2, 2].
In 3rd query, x = 4, so arr[x] = 4, which is maximum element of the arr[], so the answer is whole array, L = 1 and R = N.Input: N = 4, arr[] = { 1, 2, 2, 4}, Q = 2, query[] = {1, 2}
Output:
[1, 1]
[1, 3]
Explanation:
In 1st query, x = 1, so arr[x] = 1 and since it is the smallest element of the array, so the interval contains only one element, thus the range is [1, 1].
In 2nd query, x = 2, so arr[x] = 2 and answer is L = 1 and R = 3. here, we can see that max(arr[1], arr[2], arr[3]) = arr[x] = arr[2] = 2, which is the maximum intervals.
Approach: The idea is to precompute the largest interval for every value K in arr[] from 1 to N. Below are the steps:
- For each element K in arr[], fix the index of the element K, then find how much we can extend the interval to it’s left and right.
- Decrement left iterator till arr[left] ? K and similarly increment right iterator till arr[right] ? K.
- The final value of left and right represents the starting and the ending index of the interval, which is stored in arrL[] and arrR[] respectively.
- After we have precomputed interval range for each value. Then, for each query, we need to print the interval range for arr[x] i.e., arrL[arr[x]] and arrR[arr[x]].
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to precompute the interval // for each query void utilLargestInterval( int arr[], int arrL[], int arrR[], int N) { // For every values [1, N] find // the longest intervals for ( int maxValue = 1; maxValue <= N; maxValue++) { int lastIndex = 0; // Iterate the array arr[] for ( int i = 1; i <= N; i++) { if (lastIndex >= i || arr[i] != maxValue) continue ; int left = i, right = i; // Shift the left pointers while (left > 0 && arr[left] <= maxValue) left--; // Shift the right pointers while (right <= N && arr[right] <= maxValue) right++; left++, right--; lastIndex = right; // Store the range of interval // in arrL[] and arrR[]. for ( int j = left; j <= right; j++) { if (arr[j] == maxValue) { arrL[j] = left; arrR[j] = right; } } } } } // Function to find the largest interval // for each query in Q[] void largestInterval( int arr[], int query[], int N, int Q) { // To store the L and R of X int arrL[N + 1], arrR[N + 1]; // Function Call utilLargestInterval(arr, arrL, arrR, N); // Iterate to find ranges for each query for ( int i = 0; i < Q; i++) { cout << "[" << arrL[query[i]] << ", " << arrR[query[i]] << "]\n" ; } } // Driver Code int main() { int N = 5, Q = 3; // Given array arr[] int arr[N + 1] = { 0, 2, 1, 2, 3, 2 }; // Given Queries int query[Q] = { 1, 2, 4 }; // Function Call largestInterval(arr, query, N, Q); return 0; } |
Java
// Java program for the above approach class GFG{ // Function to precompute the interval // for each query static void utilLargestInterval( int arr[], int arrL[], int arrR[], int N) { // For every values [1, N] find // the longest intervals for ( int maxValue = 1 ; maxValue <= N; maxValue++) { int lastIndex = 0 ; // Iterate the array arr[] for ( int i = 1 ; i <= N; i++) { if (lastIndex >= i || arr[i] != maxValue) continue ; int left = i, right = i; // Shift the left pointers while (left > 0 && arr[left] <= maxValue) left--; // Shift the right pointers while (right <= N && arr[right] <= maxValue) right++; left++; right--; lastIndex = right; // Store the range of interval // in arrL[] and arrR[]. for ( int j = left; j <= right; j++) { if (arr[j] == maxValue) { arrL[j] = left; arrR[j] = right; } } } } } // Function to find the largest interval // for each query in Q[] static void largestInterval( int arr[], int query[], int N, int Q) { // To store the L and R of X int []arrL = new int [N + 1 ]; int []arrR = new int [N + 1 ]; // Function Call utilLargestInterval(arr, arrL, arrR, N); // Iterate to find ranges for // each query for ( int i = 0 ; i < Q; i++) { System.out.print( "[" + arrL[query[i]] + ", " + arrR[query[i]] + "]\n" ); } } // Driver Code public static void main(String[] args) { int N = 5 , Q = 3 ; // Given array arr[] int arr[] = { 0 , 2 , 1 , 2 , 3 , 2 }; // Given queries int query[] = { 1 , 2 , 4 }; // Function call largestInterval(arr, query, N, Q); } } // This code is contributed by Amit Katiyar |
Python3
# Python3 program for the above approach # Function to precompute the interval # for each query def utilLargestInterval(arr, arrL, arrR, N): # For every values [1, N] find # the longest intervals for maxValue in range ( 1 , N + 1 ): lastIndex = 0 # Iterate the array arr[] for i in range (N + 1 ): if (lastIndex > = i or arr[i] ! = maxValue): continue left = i right = i # Shift the left pointers while (left > 0 and arr[left] < = maxValue): left - = 1 # Shift the right pointers while (right < = N and arr[right] < = maxValue): right + = 1 left + = 1 right - = 1 lastIndex = right # Store the range of interval # in arrL[] and arrR[]. for j in range (left, right + 1 ): if (arr[j] = = maxValue): arrL[j] = left arrR[j] = right # Function to find the largest interval # for each query in Q[] def largestInterval(arr, query, N, Q): # To store the L and R of X arrL = [ 0 for i in range (N + 1 )] arrR = [ 0 for i in range (N + 1 )] # Function call utilLargestInterval(arr, arrL, arrR, N); # Iterate to find ranges for each query for i in range (Q): print ( '[' + str (arrL[query[i]]) + ', ' + str (arrR[query[i]]) + ']' ) # Driver code if __name__ = = "__main__" : N = 5 Q = 3 # Given array arr[] arr = [ 0 , 2 , 1 , 2 , 3 , 2 ] # Given Queries query = [ 1 , 2 , 4 ] # Function call largestInterval(arr, query, N, Q) # This code is contributed by rutvik_56 |
C#
// C# program for the above approach using System; class GFG{ // Function to precompute the interval // for each query static void utilLargestInterval( int []arr, int []arrL, int []arrR, int N) { // For every values [1, N] find // the longest intervals for ( int maxValue = 1; maxValue <= N; maxValue++) { int lastIndex = 0; // Iterate the array []arr for ( int i = 1; i <= N; i++) { if (lastIndex >= i || arr[i] != maxValue) continue ; int left = i, right = i; // Shift the left pointers while (left > 0 && arr[left] <= maxValue) left--; // Shift the right pointers while (right <= N && arr[right] <= maxValue) right++; left++; right--; lastIndex = right; // Store the range of interval // in arrL[] and arrR[]. for ( int j = left; j <= right; j++) { if (arr[j] == maxValue) { arrL[j] = left; arrR[j] = right; } } } } } // Function to find the largest interval // for each query in Q[] static void largestInterval( int []arr, int []query, int N, int Q) { // To store the L and R of X int []arrL = new int [N + 1]; int []arrR = new int [N + 1]; // Function Call utilLargestInterval(arr, arrL, arrR, N); // Iterate to find ranges for // each query for ( int i = 0; i < Q; i++) { Console.Write( "[" + arrL[query[i]] + ", " + arrR[query[i]] + "]\n" ); } } // Driver Code public static void Main(String[] args) { int N = 5, Q = 3; // Given array []arr int []arr = { 0, 2, 1, 2, 3, 2 }; // Given queries int []query = { 1, 2, 4 }; // Function call largestInterval(arr, query, N, Q); } } // This code is contributed by Princi Singh |
Javascript
<script> // Javascript program for the above approach // Function to precompute the interval // for each query function utilLargestInterval(arr, arrL, arrR, N) { // For every values [1, N] find // the longest intervals for ( var maxValue = 1; maxValue <= N; maxValue++) { var lastIndex = 0; // Iterate the array arr[] for ( var i = 1; i <= N; i++) { if (lastIndex >= i || arr[i] != maxValue) continue ; var left = i, right = i; // Shift the left pointers while (left > 0 && arr[left] <= maxValue) left--; // Shift the right pointers while (right <= N && arr[right] <= maxValue) right++; left++, right--; lastIndex = right; // Store the range of interval // in arrL[] and arrR[]. for ( var j = left; j <= right; j++) { if (arr[j] == maxValue) { arrL[j] = left; arrR[j] = right; } } } } } // Function to find the largest interval // for each query in Q[] function largestInterval( arr, query, N, Q) { // To store the L and R of X var arrL = Array(N+1).fill(0),arrR = Array(N+1).fill(0); // Function Call utilLargestInterval(arr, arrL, arrR, N); // Iterate to find ranges for each query for ( var i = 0; i < Q; i++) { document.write( "[" + arrL[query[i]] + ", " + arrR[query[i]] + "]<br>" ); } } // Driver Code var N = 5, Q = 3; // Given array arr[] var arr = [0, 2, 1, 2, 3, 2]; // Given Queries var query = [1, 2, 4]; // Function Call largestInterval(arr, query, N, Q); // This code is contributed by itsok. </script> |
[1, 3] [2, 2] [1, 5]
Time Complexity: O(Q + N2)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!