Given an array arr[] of N elements and Q queries of the form [X]. For each query, the task is to find the largest interval [L, R] of the array such that the greatest element in the interval is arr[X], such that 1 ? L ? X ? R.
Note: The array has 1-based indexing.
Examples:
Input: N = 5, arr[] = {2, 1, 2, 3, 2}, Q = 3, query[] = {1, 2, 4}
Output:
[1, 3]
[2, 2]
[1, 5]
Explanation :
In 1st query, x = 1, so arr[x] = 2 and answer is L = 1 and R = 3. here, we can see that max(arr[1], arr[2], arr[3]) = arr[x], which is the maximum intervals.
In 2nd query, x = 2, so arr[x] = 1 and since it is the smallest element of the array, so the interval contains only one element, thus the range is [2, 2].
In 3rd query, x = 4, so arr[x] = 4, which is maximum element of the arr[], so the answer is whole array, L = 1 and R = N.Input: N = 4, arr[] = { 1, 2, 2, 4}, Q = 2, query[] = {1, 2}
Output:
[1, 1]
[1, 3]
Explanation:
In 1st query, x = 1, so arr[x] = 1 and since it is the smallest element of the array, so the interval contains only one element, thus the range is [1, 1].
In 2nd query, x = 2, so arr[x] = 2 and answer is L = 1 and R = 3. here, we can see that max(arr[1], arr[2], arr[3]) = arr[x] = arr[2] = 2, which is the maximum intervals.
Approach: The idea is to precompute the largest interval for every value K in arr[] from 1 to N. Below are the steps:
- For each element K in arr[], fix the index of the element K, then find how much we can extend the interval to it’s left and right.
- Decrement left iterator till arr[left] ? K and similarly increment right iterator till arr[right] ? K.
- The final value of left and right represents the starting and the ending index of the interval, which is stored in arrL[] and arrR[] respectively.
- After we have precomputed interval range for each value. Then, for each query, we need to print the interval range for arr[x] i.e., arrL[arr[x]] and arrR[arr[x]].
Below is the implementation of the above approach:
C++
// C++ program for the above approach#include <bits/stdc++.h>using namespace std;// Function to precompute the interval// for each queryvoid utilLargestInterval(int arr[], int arrL[], int arrR[], int N){ // For every values [1, N] find // the longest intervals for (int maxValue = 1; maxValue <= N; maxValue++) { int lastIndex = 0; // Iterate the array arr[] for (int i = 1; i <= N; i++) { if (lastIndex >= i || arr[i] != maxValue) continue; int left = i, right = i; // Shift the left pointers while (left > 0 && arr[left] <= maxValue) left--; // Shift the right pointers while (right <= N && arr[right] <= maxValue) right++; left++, right--; lastIndex = right; // Store the range of interval // in arrL[] and arrR[]. for (int j = left; j <= right; j++) { if (arr[j] == maxValue) { arrL[j] = left; arrR[j] = right; } } } }}// Function to find the largest interval// for each query in Q[]void largestInterval( int arr[], int query[], int N, int Q){ // To store the L and R of X int arrL[N + 1], arrR[N + 1]; // Function Call utilLargestInterval(arr, arrL, arrR, N); // Iterate to find ranges for each query for (int i = 0; i < Q; i++) { cout << "[" << arrL[query[i]] << ", " << arrR[query[i]] << "]\n"; }}// Driver Codeint main(){ int N = 5, Q = 3; // Given array arr[] int arr[N + 1] = { 0, 2, 1, 2, 3, 2 }; // Given Queries int query[Q] = { 1, 2, 4 }; // Function Call largestInterval(arr, query, N, Q); return 0;} |
Java
// Java program for the above approachclass GFG{// Function to precompute the interval// for each querystatic void utilLargestInterval(int arr[], int arrL[], int arrR[], int N){ // For every values [1, N] find // the longest intervals for(int maxValue = 1; maxValue <= N; maxValue++) { int lastIndex = 0; // Iterate the array arr[] for(int i = 1; i <= N; i++) { if (lastIndex >= i || arr[i] != maxValue) continue; int left = i, right = i; // Shift the left pointers while (left > 0 && arr[left] <= maxValue) left--; // Shift the right pointers while (right <= N && arr[right] <= maxValue) right++; left++; right--; lastIndex = right; // Store the range of interval // in arrL[] and arrR[]. for(int j = left; j <= right; j++) { if (arr[j] == maxValue) { arrL[j] = left; arrR[j] = right; } } } }}// Function to find the largest interval// for each query in Q[]static void largestInterval(int arr[], int query[], int N, int Q){ // To store the L and R of X int []arrL = new int[N + 1]; int []arrR = new int[N + 1]; // Function Call utilLargestInterval(arr, arrL, arrR, N); // Iterate to find ranges for // each query for(int i = 0; i < Q; i++) { System.out.print("[" + arrL[query[i]] + ", " + arrR[query[i]] + "]\n"); }}// Driver Codepublic static void main(String[] args){ int N = 5, Q = 3; // Given array arr[] int arr[] = { 0, 2, 1, 2, 3, 2 }; // Given queries int query[] = { 1, 2, 4 }; // Function call largestInterval(arr, query, N, Q);}}// This code is contributed by Amit Katiyar |
Python3
# Python3 program for the above approach# Function to precompute the interval# for each querydef utilLargestInterval(arr, arrL, arrR, N): # For every values [1, N] find # the longest intervals for maxValue in range(1, N + 1): lastIndex = 0 # Iterate the array arr[] for i in range(N + 1): if (lastIndex >= i or arr[i] != maxValue): continue left = i right = i # Shift the left pointers while (left > 0 and arr[left] <= maxValue): left -= 1 # Shift the right pointers while (right <= N and arr[right] <= maxValue): right += 1 left += 1 right -= 1 lastIndex = right # Store the range of interval # in arrL[] and arrR[]. for j in range(left, right + 1): if (arr[j] == maxValue): arrL[j] = left arrR[j] = right # Function to find the largest interval# for each query in Q[]def largestInterval(arr, query, N, Q): # To store the L and R of X arrL = [0 for i in range(N + 1)] arrR = [0 for i in range(N + 1)] # Function call utilLargestInterval(arr, arrL, arrR, N); # Iterate to find ranges for each query for i in range(Q): print('[' + str(arrL[query[i]]) + ', ' + str(arrR[query[i]]) + ']') # Driver code if __name__=="__main__": N = 5 Q = 3 # Given array arr[] arr = [ 0, 2, 1, 2, 3, 2 ] # Given Queries query = [ 1, 2, 4 ] # Function call largestInterval(arr, query, N, Q)# This code is contributed by rutvik_56 |
C#
// C# program for the above approachusing System;class GFG{// Function to precompute the interval// for each querystatic void utilLargestInterval(int []arr, int []arrL, int []arrR, int N){ // For every values [1, N] find // the longest intervals for(int maxValue = 1; maxValue <= N; maxValue++) { int lastIndex = 0; // Iterate the array []arr for(int i = 1; i <= N; i++) { if (lastIndex >= i || arr[i] != maxValue) continue; int left = i, right = i; // Shift the left pointers while (left > 0 && arr[left] <= maxValue) left--; // Shift the right pointers while (right <= N && arr[right] <= maxValue) right++; left++; right--; lastIndex = right; // Store the range of interval // in arrL[] and arrR[]. for(int j = left; j <= right; j++) { if (arr[j] == maxValue) { arrL[j] = left; arrR[j] = right; } } } }}// Function to find the largest interval// for each query in Q[]static void largestInterval(int []arr, int []query, int N, int Q){ // To store the L and R of X int []arrL = new int[N + 1]; int []arrR = new int[N + 1]; // Function Call utilLargestInterval(arr, arrL, arrR, N); // Iterate to find ranges for // each query for(int i = 0; i < Q; i++) { Console.Write("[" + arrL[query[i]] + ", " + arrR[query[i]] + "]\n"); }}// Driver Codepublic static void Main(String[] args){ int N = 5, Q = 3; // Given array []arr int []arr = { 0, 2, 1, 2, 3, 2 }; // Given queries int []query = { 1, 2, 4 }; // Function call largestInterval(arr, query, N, Q);}}// This code is contributed by Princi Singh |
Javascript
<script>// Javascript program for the above approach// Function to precompute the interval// for each queryfunction utilLargestInterval(arr, arrL, arrR, N){ // For every values [1, N] find // the longest intervals for (var maxValue = 1; maxValue <= N; maxValue++) { var lastIndex = 0; // Iterate the array arr[] for (var i = 1; i <= N; i++) { if (lastIndex >= i || arr[i] != maxValue) continue; var left = i, right = i; // Shift the left pointers while (left > 0 && arr[left] <= maxValue) left--; // Shift the right pointers while (right <= N && arr[right] <= maxValue) right++; left++, right--; lastIndex = right; // Store the range of interval // in arrL[] and arrR[]. for (var j = left; j <= right; j++) { if (arr[j] == maxValue) { arrL[j] = left; arrR[j] = right; } } } }}// Function to find the largest interval// for each query in Q[]function largestInterval( arr, query, N, Q){ // To store the L and R of X var arrL = Array(N+1).fill(0),arrR = Array(N+1).fill(0); // Function Call utilLargestInterval(arr, arrL, arrR, N); // Iterate to find ranges for each query for (var i = 0; i < Q; i++) { document.write( "[" + arrL[query[i]] + ", " + arrR[query[i]] + "]<br>"); }}// Driver Codevar N = 5, Q = 3;// Given array arr[]var arr = [0, 2, 1, 2, 3, 2];// Given Queriesvar query = [1, 2, 4];// Function CalllargestInterval(arr, query, N, Q);// This code is contributed by itsok.</script> |
[1, 3] [2, 2] [1, 5]
Time Complexity: O(Q + N2)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

… [Trackback]
[…] Find More to that Topic: geeksforgeeks.org/largest-interval-in-an-array-that-contains-the-given-element-x-for-q-queries/ […]