Friday, January 10, 2025
Google search engine
HomeLanguagesDynamic ProgrammingLargest integers with sum of setbits at most K

Largest integers with sum of setbits at most K

Given an array of integer nums[] and a positive integer K, the task is to find the maximum number of integers that can be selected from the array such that the sum of the number of 1s in their binary representation is at most K.

Examples:

Input: nums[] = [3, 9, 4, 6], K = 3
Output: 2
Explanation: The maximum number of integers that can be selected is 2 since the sum of the number of 1s in the binary representation of 3 and 4 is 3, which is equal to K.

Input: nums[] = [1, 2, 3, 4, 5], K = 5
Output: 4
Explanation: The maximum number of integers that can be selected is 4 since the sum of the number of 1s in the binary representation of 1, 2, 3, and 4 is 5, which is equal to K.

Approach: This problem can be solved using dynamic programming

We can create a two-dimensional array dp, where dp[i][j] represents the maximum number of integers that can be selected from the first i elements of the array such that the sum of the number of 1s in their binary representation is at most j.

We can fill the dp array using the following recursive formula:

  • dp[i][j] = max(dp[i – 1][j], dp[i – 1][j – bit_sum] + 1)
  • where bit_sum is the number of 1s in the binary representation of nums[i – 1].

Follow the steps mentioned below to solve the problem:

  • Initialize a two-dimensional array dp, where dp[i][j] represents the maximum number of integers that can be selected from the first i elements of the array such that the sum of the number of 1s in their binary representation is at most j.
  • Fill the dp array using the following recursive formula:
  • dp[i][j] = max(dp[i – 1][j], dp[i – 1][j – bit_sum] + 1) where bit_sum is the number of 1s in the binary representation of nums[i – 1].
  • Return the value of dp[n][k], where n is the length of the nums array.

Below is the implementation of the above approach:

C++




// C++ code for the above approach:
#include <bits/stdc++.h>
#include <bitset>
 
using namespace std;
 
// Function to find the maximum number of
// integers that can be selected such that
// the sum of the number of 1s in their
// binary representation is at most k
int maximum_int_count(vector<int> nums, int k)
{
 
    // Initialize the dp array with 0s
    vector<vector<int> > dp(nums.size() + 1,
                            vector<int>(k + 1, 0));
 
    // Fill the dp array using the
    // recursive formula
    for (int i = 1; i <= nums.size(); i++) {
        for (int j = 0; j <= k; j++) {
            bitset<32> bits(nums[i - 1]);
            int bit_sum = bits.count();
            dp[i][j] = (j >= bit_sum)
                           ? max(dp[i - 1][j],
                                 dp[i - 1][j - bit_sum] + 1)
                           : dp[i - 1][j];
        }
    }
 
    // Return the maximum number of integers
    // that can be selected
    return dp[nums.size()][k];
}
// Driver code
int main()
{
    vector<int> nums{ 3, 9, 4, 6 };
    int k = 3;
 
    // Function Call
    cout << maximum_int_count(nums, k) << endl;
    nums = { 1, 2, 3, 4, 5 };
    k = 5;
 
    // Function Call
    cout << maximum_int_count(nums, k) << endl;
    return 0;
}


Java




import java.util.*;
import java.io.*;
 
public class GFG {
    // Function to find the maximum number of
    // integers that can be selected such that
    // the sum of the number of 1s in their
    // binary representation is at most k
    public static int maximumIntCount(Vector<Integer> nums, int k) {
 
        // Initialize the dp array with 0s
        Vector<Vector<Integer>> dp = new Vector<>(nums.size() + 1);
        for (int i = 0; i <= nums.size(); i++) {
            dp.add(new Vector<Integer>());
            for (int j = 0; j <= k; j++) {
                dp.get(i).add(0);
            }
        }
 
        // Fill the dp array using the
        // recursive formula
        for (int i = 1; i <= nums.size(); i++) {
            for (int j = 0; j <= k; j++) {
                int bitSum = Integer.bitCount(nums.get(i - 1));
                dp.get(i).set(j, (j >= bitSum) ? Math.max(dp.get(i - 1).get(j), dp.get(i - 1).get(j - bitSum) + 1) : dp.get(i - 1).get(j));
            }
        }
 
        // Return the maximum number of integers
        // that can be selected
        return dp.get(nums.size()).get(k);
    }
 
    public static void main(String[] args) {
        Vector<Integer> nums = new Vector<>(Arrays.asList(3, 9, 4, 6));
        int k = 3;
 
        // Function Call
        System.out.println(maximumIntCount(nums, k));
 
        nums = new Vector<>(Arrays.asList(1, 2, 3, 4, 5));
        k = 5;
 
        // Function Call
        System.out.println(maximumIntCount(nums, k));
    }
}


Python3




# Python code for the above approach:
 
# Function to find the maximum number of
# integers that can be selected such that
# the sum of the number of 1s in their
# binary representation is at most k
 
 
def maximum_int_count(nums, k):
 
    # Initialize the dp array with 0s
    dp = [[0]*(k+1) for _ in range(len(nums)+1)]
 
    # Fill the dp array using the
    # recursive formula
    for i in range(1, len(nums)+1):
        for j in range(0, k+1):
            N = nums[i-1]
            bits = bin(N)
            bit_sum = bits.count('1')
            if(j >= bit_sum):
                dp[i][j] = max(dp[i - 1][j],
                               dp[i - 1][j - bit_sum] + 1)
            else:
                dp[i][j] = dp[i-1][j]
 
    # Return the maximum number of integers
    # that can be selected
    return dp[len(nums)][k]
 
 
# Driver code
nums = [3, 9, 4, 6]
k = 3
 
# Function Call
print(maximum_int_count(nums, k))
nums = [1, 2, 3, 4, 5]
k = 5
 
# Function Call
print(maximum_int_count(nums, k))


C#




using System;
using System.Linq;
using System.Collections.Generic;
 
class Gfg
{
 
  // Function to find the maximum number of
  // integers that can be selected such that
  // the sum of the number of 1s in their
  // binary representation is at most k
  public static int maximum_int_count(List<int> nums,
                                      int k)
  {
 
    // Initialize the dp array with 0s
    int[, ] dp = new int[nums.Count + 1, k + 1];
 
    // Fill the dp array using the
    // recursive formula
    for (int i = 1; i <= nums.Count; i++) {
      for (int j = 0; j <= k; j++) {
        int bit_sum
          = Convert.ToString(nums[i - 1], 2)
          .Count(c = > c == '1');
        dp[i, j] = (j >= bit_sum) ? Math.Max(
          dp[i - 1, j],
          dp[i - 1, j - bit_sum] + 1)
          : dp[i - 1, j];
      }
    }
 
    // Return the maximum number of integers
    // that can be selected
    return dp[nums.Count, k];
  }
 
  public static void Main(string[] args)
  {
    List<int> nums = new List<int>{ 3, 9, 4, 6 };
    int k = 3;
 
    // Function Call
    Console.WriteLine(maximum_int_count(nums, k));
    nums = new List<int>{ 1, 2, 3, 4, 5 };
    k = 5;
 
    // Function Call
    Console.WriteLine(maximum_int_count(nums, k));
  }
}
 
// This code is contributed by divya_p123.


Javascript




// JavaScript code for the above approach:
 
function maximumIntCount(nums, k) {
  // Initialize the dp array with 0s
  let dp = Array.from({length: nums.length + 1}, () =>
    Array(k + 1).fill(0)
  );
 
  // Fill the dp array using the
  // recursive formula
  for (let i = 1; i <= nums.length; i++) {
    for (let j = 0; j <= k; j++) {
      let bitSum = (nums[i - 1].toString(2).match(/1/g) || []).length;
      dp[i][j] = j >= bitSum ? Math.max(dp[i - 1][j], dp[i - 1][j - bitSum] + 1) : dp[i - 1][j];
    }
  }
 
  // Return the maximum number of integers
  // that can be selected
  return dp[nums.length][k];
}
 
// Driver code
let nums = [3, 9, 4, 6];
let k = 3;
 
// Function Call
console.log(maximumIntCount(nums, k));
 
nums = [1, 2, 3, 4, 5];
k = 5;
 
// Function Call
console.log(maximumIntCount(nums, k));
 
// This code is contributed by hkdass001.


Output

2
4

Time complexity: O(n * k), where n is the length of the nums array and k is the given integer.
Auxiliary Space: O(n * k), as it uses a two-dimensional array of size n * k.

Related Articles:

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments