Saturday, December 28, 2024
Google search engine
HomeData Modelling & AILargest increasing subsequence of consecutive integers

Largest increasing subsequence of consecutive integers

Given an array of n positive integers. We need to find the largest increasing sequence of consecutive positive integers.

Examples: 

Input : arr[] = {5, 7, 6, 7, 8} 
Output : Size of LIS = 4
         LIS = 5, 6, 7, 8

Input : arr[] = {5, 7, 8, 7, 5} 
Output : Size of LIS = 2
         LIS = 7, 8

This problem can be solved easily by the concept of LIS where each next greater element differ from earlier one by 1. But this will take O(n^2) time complexity.
With the use of hashing we can finding the size of longest increasing sequence with consecutive integers in time complexity of O(n).

We create a hash table.. Now for each element arr[i], we perform hash[arr[i]] = hash[arr[i] – 1] + 1. So, for every element we know longest consecutive increasing subsequence ending with it. Finally we return maximum value from hash table.

Implementation:

C++




// C++ implementation of longest continuous increasing
// subsequence
#include <bits/stdc++.h>
using namespace std;
 
// Function for LIS
int findLIS(int A[], int n)
{
    unordered_map<int, int> hash;
 
    // Initialize result
    int LIS_size = 1;
    int LIS_index = 0;
 
    hash[A[0]] = 1;
 
    // iterate through array and find
    // end index of LIS and its Size
    for (int i = 1; i < n; i++) {
        hash[A[i]] = hash[A[i] - 1] + 1;
        if (LIS_size < hash[A[i]]) {
            LIS_size = hash[A[i]];
            LIS_index = A[i];
        }
    }
 
    // print LIS size
    cout << "LIS_size = " << LIS_size << "\n";
 
    // print LIS after setting start element
    cout << "LIS : ";
    int start = LIS_index - LIS_size + 1;
    while (start <= LIS_index) {
        cout << start << " ";
        start++;
    }
}
 
// driver
int main()
{
    int A[] = { 2, 5, 3, 7, 4, 8, 5, 13, 6 };
    int n = sizeof(A) / sizeof(A[0]);
    findLIS(A, n);
    return 0;
}


Java




// Java implementation of longest continuous increasing
// subsequence
import java.util.*;
 
class GFG
{
 
// Function for LIS
static void findLIS(int A[], int n)
{
    Map<Integer, Integer> hash = new HashMap<Integer, Integer>();
 
    // Initialize result
    int LIS_size = 1;
    int LIS_index = 0;
 
    hash.put(A[0], 1);
    // iterate through array and find
    // end index of LIS and its Size
    for (int i = 1; i < n; i++)
    {
        hash.put(A[i], hash.get(A[i] - 1)==null? 1:hash.get(A[i] - 1)+1);
        if (LIS_size < hash.get(A[i]))
        {
            LIS_size = hash.get(A[i]);
            LIS_index = A[i];
        }
    }
 
    // print LIS size
    System.out.println("LIS_size = " + LIS_size);
 
    // print LIS after setting start element
    System.out.print("LIS : ");
    int start = LIS_index - LIS_size + 1;
    while (start <= LIS_index)
    {
        System.out.print(start + " ");
        start++;
    }
}
 
// Driver code
public static void main(String[] args)
{
    int A[] = { 2, 5, 3, 7, 4, 8, 5, 13, 6 };
    int n = A.length;
    findLIS(A, n);
}
}
 
// This code is contributed by Princi Singh


Python3




# Python3 implementation of longest
# continuous increasing subsequence
 
# Function for LIS
def findLIS(A, n):
    hash = dict()
 
    # Initialize result
    LIS_size, LIS_index = 1, 0
 
    hash[A[0]] = 1
 
    # iterate through array and find
    # end index of LIS and its Size
    for i in range(1, n):
 
        # If the desired key is not present
        # in dictionary, it will throw key error,
        # to avoid this error this is necessary
        if A[i] - 1 not in hash:
            hash[A[i] - 1] = 0
 
        hash[A[i]] = hash[A[i] - 1] + 1
        if LIS_size < hash[A[i]]:
            LIS_size = hash[A[i]]
            LIS_index = A[i]
     
    # print LIS size
    print("LIS_size =", LIS_size)
 
    # print LIS after setting start element
    print("LIS : ", end = "")
 
    start = LIS_index - LIS_size + 1
    while start <= LIS_index:
        print(start, end = " ")
        start += 1
 
# Driver Code
if __name__ == "__main__":
    A = [ 2, 5, 3, 7, 4, 8, 5, 13, 6 ]
    n = len(A)
    findLIS(A, n)
 
# This code is contributed by sanjeev2552


C#




// C# implementation of longest continuous increasing
// subsequence
using System;
using System.Collections.Generic;
 
class GFG
{
 
// Function for LIS
static void findLIS(int []A, int n)
{
    Dictionary<int,int> hash = new Dictionary<int,int>();
 
    // Initialize result
    int LIS_size = 1;
    int LIS_index = 0;
 
    hash.Add(A[0], 1);
     
    // iterate through array and find
    // end index of LIS and its Size
    for (int i = 1; i < n; i++)
    {
        if(hash.ContainsKey(A[i]-1))
        {
            var val = hash[A[i]-1];
            hash.Remove(A[i]);
            hash.Add(A[i], val + 1);
        }
        else
        {
            hash.Add(A[i], 1);
        }
        if (LIS_size < hash[A[i]])
        {
            LIS_size = hash[A[i]];
            LIS_index = A[i];
        }
    }
 
    // print LIS size
    Console.WriteLine("LIS_size = " + LIS_size);
 
    // print LIS after setting start element
    Console.Write("LIS : ");
    int start = LIS_index - LIS_size + 1;
    while (start <= LIS_index)
    {
        Console.Write(start + " ");
        start++;
    }
}
 
// Driver code
public static void Main(String[] args)
{
    int []A = { 2, 5, 3, 7, 4, 8, 5, 13, 6 };
    int n = A.Length;
    findLIS(A, n);
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// JavaScript implementation of longest continuous increasing
// subsequence
 
 
// Function for LIS
function findLIS(A, n) {
    let hash = new Map();
 
    // Initialize result
    let LIS_size = 1;
    let LIS_index = 0;
 
    hash.set(A[0], 1);
    // iterate through array and find
    // end index of LIS and its Size
    for (let i = 1; i < n; i++) {
        hash.set(A[i], hash.get(A[i] - 1) == null ?
        1 : hash.get(A[i] - 1) + 1);
        if (LIS_size < hash.get(A[i])) {
            LIS_size = hash.get(A[i]);
            LIS_index = A[i];
        }
    }
 
    // print LIS size
    document.write("LIS_size = " + LIS_size + "<br>");
 
    // print LIS after setting start element
    document.write("LIS : ");
    let start = LIS_index - LIS_size + 1;
    while (start <= LIS_index) {
        document.write(start + " ");
        start++;
    }
}
 
// Driver code
 
let A = [2, 5, 3, 7, 4, 8, 5, 13, 6];
let n = A.length;
findLIS(A, n);
 
// This code is contributed by gfgking
 
</script>


Output: 

LIS_size = 5
LIS : 2 3 4 5 6 

 

Time Complexity : O(n)
Auxiliary Space: O(n)

This article is contributed by Aarti_Rathi. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments