Thursday, January 9, 2025
Google search engine
HomeData Modelling & AILargest element in an N-ary Tree

Largest element in an N-ary Tree

Given an N-ary tree consisting of N nodes, the task is to find the node having the largest value in the given N-ary Tree.

Examples:

Input:

Output: 90
Explanation: The node with the largest value in the tree is 90.

Input:

Output: 95
Explanation: The node with the largest value in the tree is 95.

Approach: The given problem can be solved by traversing the given N-ary tree and keeping track of the maximum value of nodes that occurred. After completing the traversal, print the maximum value obtained.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Structure of a
// node of N-ary tree
struct Node {
    int key;
    vector<Node*> child;
};
 
// Stores the node with largest value
Node* maximum = NULL;
 
// Function to create a new Node
Node* newNode(int key)
{
    Node* temp = new Node;
    temp->key = key;
 
    // Return the newly created node
    return temp;
}
 
// Function to find the node with
// largest value in N-ary tree
void findlargest(Node* root)
{
    // Base Case
    if (root == NULL)
        return;
 
    // If maximum is NULL, return
    // the value of root node
    if ((maximum) == NULL)
        maximum = root;
 
    // If value of the root is greater
    // than maximum, update the maximum node
    else if (root->key > (maximum)->key) {
        maximum = root;
    }
 
    // Recursively call for all the
    // children of the root node
    for (int i = 0;
         i < root->child.size(); i++) {
        findlargest(root->child[i]);
    }
}
 
// Driver Code
int main()
{
    // Given N-ary tree
    Node* root = newNode(11);
    (root->child).push_back(newNode(21));
    (root->child).push_back(newNode(29));
    (root->child).push_back(newNode(90));
    (root->child[0]->child).push_back(newNode(18));
    (root->child[1]->child).push_back(newNode(10));
    (root->child[1]->child).push_back(newNode(12));
    (root->child[2]->child).push_back(newNode(77));
 
    findlargest(root);
 
    // Print the largest value
    cout << maximum->key;
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Structure of a
// node of N-ary tree
static class Node
{
    int key;
    Vector<Node> child = new Vector<>();
};
 
// Stores the node with largest value
static Node maximum = null;
 
// Function to create a new Node
static Node newNode(int key)
{
    Node temp = new Node();
    temp.key = key;
 
    // Return the newly created node
    return temp;
}
 
// Function to find the node with
// largest value in N-ary tree
static void findlargest(Node root)
{
     
    // Base Case
    if (root == null)
        return;
 
    // If maximum is null, return
    // the value of root node
    if ((maximum) == null)
        maximum = root;
 
    // If value of the root is greater
    // than maximum, update the maximum node
    else if (root.key > (maximum).key)
    {
        maximum = root;
    }
 
    // Recursively call for all the
    // children of the root node
    for(int i = 0;
            i < root.child.size(); i++)
    {
        findlargest(root.child.get(i));
    }
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given N-ary tree
    Node root = newNode(11);
    (root.child).add(newNode(21));
    (root.child).add(newNode(29));
    (root.child).add(newNode(90));
    (root.child.get(0).child).add(newNode(18));
    (root.child.get(1).child).add(newNode(10));
    (root.child.get(1).child).add(newNode(12));
    (root.child.get(2).child).add(newNode(77));
 
    findlargest(root);
 
    // Print the largest value
    System.out.print(maximum.key);
}
}
 
// This code is contributed by Princi Singh


Python3




# Python3 program for the above approach
 
# Structure of a
# node of N-ary tree
class Node:
    # Constructor to set the data of
    # the newly created tree node
    def __init__(self, key):
        self.key = key
        self.child = []
 
# Stores the node with largest value
maximum = None
 
# Function to create a new Node
def newNode(key):
    temp = Node(key)
 
    # Return the newly created node
    return temp
 
# Function to find the node with
# largest value in N-ary tree
def findlargest(root):
    global maximum
    # Base Case
    if (root == None):
        return
 
    # If maximum is null, return
    # the value of root node
    if ((maximum) == None):
        maximum = root
 
    # If value of the root is greater
    # than maximum, update the maximum node
    elif (root.key > (maximum).key):
        maximum = root
 
    # Recursively call for all the
    # children of the root node
    for i in range(len(root.child)):
        findlargest(root.child[i])
 
# Given N-ary tree
root = newNode(11)
(root.child).append(newNode(21))
(root.child).append(newNode(29))
(root.child).append(newNode(90))
(root.child[0].child).append(newNode(18))
(root.child[1].child).append(newNode(10))
(root.child[1].child).append(newNode(12))
(root.child[2].child).append(newNode(77))
 
findlargest(root)
 
# Print the largest value
print(maximum.key)
 
# This code is contributed by decode2207.


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
public class GFG{
 
// Structure of a
// node of N-ary tree
class Node
{
    public int key;
    public List<Node> child = new List<Node>();
};
 
// Stores the node with largest value
static Node maximum = null;
 
// Function to create a new Node
static Node newNode(int key)
{
    Node temp = new Node();
    temp.key = key;
 
    // Return the newly created node
    return temp;
}
 
// Function to find the node with
// largest value in N-ary tree
static void findlargest(Node root)
{
     
    // Base Case
    if (root == null)
        return;
 
    // If maximum is null, return
    // the value of root node
    if ((maximum) == null)
        maximum = root;
 
    // If value of the root is greater
    // than maximum, update the maximum node
    else if (root.key > (maximum).key)
    {
        maximum = root;
    }
 
    // Recursively call for all the
    // children of the root node
    for(int i = 0;
            i < root.child.Count; i++)
    {
        findlargest(root.child[i]);
    }
}
 
// Driver Code
public static void Main(String[] args)
{
     
    // Given N-ary tree
    Node root = newNode(11);
    (root.child).Add(newNode(21));
    (root.child).Add(newNode(29));
    (root.child).Add(newNode(90));
    (root.child[0].child).Add(newNode(18));
    (root.child[1].child).Add(newNode(10));
    (root.child[1].child).Add(newNode(12));
    (root.child[2].child).Add(newNode(77));
 
    findlargest(root);
 
    // Print the largest value
    Console.Write(maximum.key);
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
    // Javascript program for the above approach
     
    // Structure of a
    // node of N-ary tree
    class Node
    {
        constructor(key) {
           this.key = key;
           this.child = [];
        }
    }
     
    // Stores the node with largest value
    let maximum = null;
 
    // Function to create a new Node
    function newNode(key)
    {
        let temp = new Node(key);
 
        // Return the newly created node
        return temp;
    }
 
    // Function to find the node with
    // largest value in N-ary tree
    function findlargest(root)
    {
 
        // Base Case
        if (root == null)
            return;
 
        // If maximum is null, return
        // the value of root node
        if ((maximum) == null)
            maximum = root;
 
        // If value of the root is greater
        // than maximum, update the maximum node
        else if (root.key > (maximum).key)
        {
            maximum = root;
        }
 
        // Recursively call for all the
        // children of the root node
        for(let i = 0; i < root.child.length; i++)
        {
            findlargest(root.child[i]);
        }
    }
     
    // Given N-ary tree
    let root = newNode(11);
    (root.child).push(newNode(21));
    (root.child).push(newNode(29));
    (root.child).push(newNode(90));
    (root.child[0].child).push(newNode(18));
    (root.child[1].child).push(newNode(10));
    (root.child[1].child).push(newNode(12));
    (root.child[2].child).push(newNode(77));
  
    findlargest(root);
  
    // Print the largest value
    document.write(maximum.key);
 
// This code is contributed by surehs07.
</script>


Output: 

90

 

Time Complexity: O(N)
Auxiliary Space: O(N) In the worst case, if the tree is a skewed tree, then the space complexity can be O(n) due to function call stack.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments