Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AILargest cube that can be inscribed within the sphere

Largest cube that can be inscribed within the sphere

Given here is a sphere of radius r, the task is to find the side of the largest cube that can fit inside in it.
Examples: 
 

Input: r = 8
Output: 9.2376

Input: r = 5
Output: 5.7735

 

 

Approach:
 

Side of the cube = a 
Radius of the sphere = r 
From the diagonal, it is clear that, diagonal of the cube = diameter of the sphere, 
a?3 = 2r or, a = 2r/?3

Below is the implementation:
 

C++




// C++ Program to find the biggest cube
// inscribed within a sphere
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the side of the cube
float largestCube(float r)
{
 
    // radius cannot be negative
    if (r < 0)
        return -1;
 
    // side of the cube
    float a = (2 * r) / sqrt(3);
    return a;
}
 
// Driver code
int main()
{
    float r = 5;
    cout << largestCube(r) << endl;
 
    return 0;
}


Java




// Java Program to find the biggest cube
// inscribed within a sphere
import java.util.*;
class Solution{
// Function to find the side of the cube
static float largestCube(float r)
{
   
    // radius cannot be negative
    if (r < 0)
        return -1;
   
    // side of the cube
    float a = (2 * r) / (float)Math.sqrt(3);
    return a;
}
   
// Driver code
public static void main(String args[])
{
    float r = 5;
    System.out.println( largestCube(r));
   
}
 
}
//contributed by Arnab Kundu


Python3




# Python 3 Program to find the biggest
# cube inscribed within a sphere
from math import sqrt
 
# Function to find the side of the cube
def largestCube(r):
     
    # radius cannot be negative
    if (r < 0):
        return -1
 
    # side of the cube
    a = (2 * r) / sqrt(3)
    return a
 
# Driver code
if __name__ == '__main__':
    r = 5
    print("{0:.6}".format(largestCube(r)))
 
# This code is contributed
# by SURENDRA_GANGWAR


C#




// C# Program to find the biggest cube
// inscribed within a sphere
using System;
class Solution{
// Function to find the side of the cube
static float largestCube(float r)
{
 
    // radius cannot be negative
    if (r < 0)
        return -1;
 
    // side of the cube
    float a = (2 * r) / (float)Math.Sqrt(3);
    return a;
}
 
// Driver code
static void Main()
{
    float r = 5;
    Console.WriteLine( largestCube(r));
 
}
 
}
//This code is contributed by mits


PHP




<?php
// PHP Program to find the biggest
// cube inscribed within a sphere
 
// Function to find the side
// of the cube
function largestCube($r)
{
 
    // radius cannot be negative
    if ($r < 0)
        return -1;
 
    // side of the cube
    $a = (float)((2 * $r) / sqrt(3));
    return $a;
}
 
// Driver code
$r = 5;
echo largestCube($r);
 
// This code is contributed by akt_mit
?>


Javascript




<script>
// javascript Program to find the biggest cube
// inscribed within a sphere
 
// Function to find the side of the cube
function largestCube(r)
{
   
    // radius cannot be negative
    if (r < 0)
        return -1;
   
    // side of the cube
    var a = (2 * r) / Math.sqrt(3);
    return a;
}
   
// Driver code 
var r = 5;
document.write( largestCube(r).toFixed(5));
 
// This code is contributed by 29AjayKumar
</script>


Output: 

5.7735

 

Time Complexity: O(1)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments