Thursday, January 9, 2025
Google search engine

Kummer Numbers

Given an integer N, the task is to print the first N terms of the Kummer Number
Examples: 
 

Input: N = 3 
Output: 1, 5, 29 
1 = -1 + 2 
5 = -1 + 2 * 3 
29 = -1 + 2 * 3 * 5 
Input: N = 5 
Output: 1, 5, 29, 209, 2309 
 

 

A Naive Approach is to check all numbers from 1 to n one by one is prime or not, if yes then store the multiplication in result, similarly store the result of multiplication of primes till n and add -1.
Efficient Approach is to find all the prime up-to n using Sieve of Sundaram and then just calculate the nth kummer number by multiplying them all and adding -1.
Below is the implementation of the above approach: 
 

C++




// C++ program to find Kummer
// number upto n terms
 
#include <bits/stdc++.h>
using namespace std;
const int MAX = 1000000;
 
// vector to store all prime
// less than and equal to 10^6
vector<int> primes;
 
// Function for the Sieve of Sundaram.
// This function stores all
// prime numbers less than MAX in primes
void sieveSundaram()
{
    // In general Sieve of Sundaram,
    // produces primes smaller
    // than (2*x + 2) for a
    // number given number x. Since
    // we want primes smaller than MAX,
    // we reduce MAX to half
    // This array is used to separate
    // numbers of the form
    // i+j+2ij from others
    // where 1 <= i <= j
    bool marked[MAX / 2 + 1] = { 0 };
 
    // Main logic of Sundaram.
    // Mark all numbers which
    // do not generate prime number
    // by doing 2*i+1
    for (int i = 1; i <= (sqrt(MAX) - 1) / 2; i++)
 
        for (int j = (i * (i + 1)) << 1;
             j <= MAX / 2;
             j += 2 * i + 1)
            marked[j] = true;
 
    // Since 2 is a prime number
    primes.push_back(2);
 
    // Print other primes.
    // Remaining primes are of the
    // form 2*i + 1 such that
    // marked[i] is false.
    for (int i = 1; i <= MAX / 2; i++)
        if (marked[i] == false)
            primes.push_back(2 * i + 1);
}
 
// Function to calculate nth Kummer number
int calculateKummer(int n)
{
    // Multiply first n primes
    int result = 1;
    for (int i = 0; i < n; i++)
        result = result * primes[i];
 
    // return nth Kummer number
    return -1 + result;
}
 
// Driver code
int main()
{
    int n = 5;
    sieveSundaram();
    for (int i = 1; i <= n; i++)
        cout << calculateKummer(i) << ", ";
    return 0;
}


Java




// Java program to find Kummer
// number upto n terms
import java.util.*;
class GFG{
static int MAX = 1000000;
  
// vector to store all prime
// less than and equal to 10^6
static Vector<Integer> primes = new Vector<Integer>();
  
// Function for the Sieve of Sundaram.
// This function stores all
// prime numbers less than MAX in primes
static void sieveSundaram()
{
    // In general Sieve of Sundaram,
    // produces primes smaller
    // than (2*x + 2) for a
    // number given number x. Since
    // we want primes smaller than MAX,
    // we reduce MAX to half
    // This array is used to separate
    // numbers of the form
    // i+j+2ij from others
    // where 1 <= i <= j
    boolean marked[] = new boolean[MAX / 2 + 1];
  
    // Main logic of Sundaram.
    // Mark all numbers which
    // do not generate prime number
    // by doing 2*i+1
    for (int i = 1;
              i <= (Math.sqrt(MAX) - 1) / 2;
             i++)
  
        for (int j = (i * (i + 1)) << 1;
                 j <= MAX / 2;
                 j += 2 * i + 1)
            marked[j] = true;
  
    // Since 2 is a prime number
    primes.add(2);
  
    // Print other primes.
    // Remaining primes are of the
    // form 2*i + 1 such that
    // marked[i] is false.
    for (int i = 1; i <= MAX / 2; i++)
        if (marked[i] == false)
            primes.add(2 * i + 1);
}
  
// Function to calculate nth Kummer number
static int calculateKummer(int n)
{
    // Multiply first n primes
    int result = 1;
    for (int i = 0; i < n; i++)
        result = result * primes.get(i);
  
    // return nth Kummer number
    return -1 + result;
}
  
// Driver code
public static void main(String[] args)
{
    int n = 5;
    sieveSundaram();
    for (int i = 1; i <= n; i++)
        System.out.print(calculateKummer(i) + ", ");
}
}
 
// This code is contributed by sapnasingh4991


Python3




# Python3 program to find Kummer
# number upto n terms
import math
 
MAX = 1000000
 
# list to store all prime
# less than and equal to 10^6
primes=[]
 
# Function for the Sieve of Sundaram.
# This function stores all
# prime numbers less than MAX in primes
def sieveSundaram():
     
    # In general Sieve of Sundaram,
    # produces primes smaller
    # than (2*x + 2) for a
    # number given number x. Since
    # we want primes smaller than MAX,
    # we reduce MAX to half
    # This list is used to separate
    # numbers of the form
    # i+j+2ij from others
    # where 1 <= i <= j
    marked = [ 0 ] * int(MAX / 2 + 1)
 
    # Main logic of Sundaram.
    # Mark all numbers which
    # do not generate prime number
    # by doing 2*i+1
    for i in range(1, int((math.sqrt(MAX) - 1) // 2) + 1):
        for j in range((i * (i + 1)) << 1,
                        MAX // 2 + 1, 2 * i + 1):
            marked[j] = True
 
    # Since 2 is a prime number
    primes.append(2)
 
    # Print other primes.
    # Remaining primes are of the
    # form 2*i + 1 such that
    # marked[i] is false.
    for i in range(1, MAX // 2 + 1 ):
        if (marked[i] == False):
            primes.append(2 * i + 1)
 
# Function to calculate nth Kummer number
def calculateKummer(n):
 
    # Multiply first n primes
    result = 1
    for i in range(n):
        result = result * primes[i]
 
    # return nth Kummer number
    return (-1 + result)
 
# Driver code
 
# Given N
N = 5
sieveSundaram()
for i in range(1, N + 1):
    print(calculateKummer(i), end = ", ")
     
# This code is contributed by Vishal Maurya


C#




// C# program to find Kummer
// number upto n terms
using System;
using System.Collections.Generic;
 
class GFG{
static int MAX = 1000000;
 
// vector to store all prime
// less than and equal to 10^6
static List<int> primes = new List<int>();
 
// Function for the Sieve of Sundaram.
// This function stores all
// prime numbers less than MAX in primes
static void sieveSundaram()
{
    // In general Sieve of Sundaram,
    // produces primes smaller
    // than (2*x + 2) for a
    // number given number x. Since
    // we want primes smaller than MAX,
    // we reduce MAX to half
    // This array is used to separate
    // numbers of the form
    // i+j+2ij from others
    // where 1 <= i <= j
    bool []marked = new bool[MAX / 2 + 1];
 
    // Main logic of Sundaram.
    // Mark all numbers which
    // do not generate prime number
    // by doing 2*i+1
    for (int i = 1;
             i <= (Math.Sqrt(MAX) - 1) / 2;
             i++)
 
        for (int j = (i * (i + 1)) << 1;
                 j <= MAX / 2;
                 j += 2 * i + 1)
            marked[j] = true;
 
    // Since 2 is a prime number
    primes.Add(2);
 
    // Print other primes.
    // Remaining primes are of the
    // form 2*i + 1 such that
    // marked[i] is false.
    for (int i = 1; i <= MAX / 2; i++)
        if (marked[i] == false)
            primes.Add(2 * i + 1);
}
 
// Function to calculate nth Kummer number
static int calculateKummer(int n)
{
    // Multiply first n primes
    int result = 1;
    for (int i = 0; i < n; i++)
        result = result * primes[i];
 
    // return nth Kummer number
    return -1 + result;
}
 
// Driver code
public static void Main(String[] args)
{
    int n = 5;
    sieveSundaram();
    for (int i = 1; i <= n; i++)
        Console.Write(calculateKummer(i) + ", ");
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// JavaScript program to find Kummer
// number upto n terms
 
// Function to count the number of
// ways to decode the given digit
// sequence
let MAX = 1000000;
    
// vector to store all prime
// less than and equal to 10^6
let primes = [];
    
// Function for the Sieve of Sundaram.
// This function stores all
// prime numbers less than MAX in primes
function sieveSundaram()
{
    // In general Sieve of Sundaram,
    // produces primes smaller
    // than (2*x + 2) for a
    // number given number x. Since
    // we want primes smaller than MAX,
    // we reduce MAX to half
    // This array is used to separate
    // numbers of the form
    // i+j+2ij from others
    // where 1 <= i <= j
    let marked = Array.from(
    {length: MAX / 2 + 1}, (_, i) => 0);
    
    // Main logic of Sundaram.
    // Mark all numbers which
    // do not generate prime number
    // by doing 2*i+1
    for (let i = 1;
              i <= (Math.sqrt(MAX) - 1) / 2;
             i++)
    
        for (let j = (i * (i + 1)) << 1;
                 j <= MAX / 2;
                 j += 2 * i + 1)
            marked[j] = true;
    
    // Since 2 is a prime number
    primes.push(2);
    
    // Print other primes.
    // Remaining primes are of the
    // form 2*i + 1 such that
    // marked[i] is false.
    for (let i = 1; i <= MAX / 2; i++)
        if (marked[i] == false)
            primes.push(2 * i + 1);
}
    
// Function to calculate nth Kummer number
function calculateKummer(n)
{
    // Multiply first n primes
    let result = 1;
    for (let i = 0; i < n; i++)
        result = result * primes[i];
    
    // return nth Kummer number
    return -1 + result;
}
// Driver Code
 
        let n = 5;
    sieveSundaram();
    for (let i = 1; i <= n; i++)
        document.write(calculateKummer(i) + ", ");
           
</script>


Output: 
1, 5, 29, 209, 2309,
 

References: https://oeis.org/A057588
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
28 Feb, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments