Saturday, December 28, 2024
Google search engine
HomeData Modelling & AIKth smallest or largest element in unsorted Array using Counting Sort

Kth smallest or largest element in unsorted Array using Counting Sort

Given an array arr[] and a number K, where K is smaller than the size of the array, we need to find the Kth smallest element in the given array. It is given that array elements can be repeated (not limited to distinct).

Examples: 

Input: arr[] = {7, 10, 4, 3, 20, 15}, K = 3 
Output: 7

Input: arr[] = {7, 1, 5, 4, 20, 15, 8}, K = 5 
Output:

We have discussed this article with other approaches as well: 

Approach: The idea is to use the concept of Counting Sort. Below are the steps: 

  1. Find the maximum element(say maxE) in the array and create an array(say freq[]) of length maxE + 1 and initialize it to zero.
  2. Loop through all the elements in the given array and store the frequency of the element in freq[].
  3. Iterate over the array freq[] until we reach the Kth element.
  4. Print the Kth element reached in the above step.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <iostream>
using namespace std;
  
// Function to find the Kth smallest
// element in Unsorted Array
int findKthSmallest(int arr[], int n, int k)
{
  
    // Initialize the max Element as 0
    int max = 0;
  
    // Iterate arr[] and find the maximum
    // element in it
    for (int i = 0; i < n; i++)
    {
        if (arr[i] > max)
            max = arr[i];
    }
  
    // Frequency array to store
    // the frequencies
    int counter[max + 1] = { 0 };
  
    // Counter variable
    int smallest = 0;
  
    // Counting the frequencies
    for (int i = 0; i < n; i++) 
    {
        counter[arr[i]]++;
    }
  
    // Iterate through the freq[]
    for (int num = 1; num <= max; num++)
    {
        // Check if num is present
        // in the array
        if (counter[num] > 0) {
  
            // Increment the counter
            // with the frequency
            // of num
            smallest += counter[num];
        }
  
        // Checking if we have reached
        // the Kth smallest element
        if (smallest >= k) 
        {
            // Return the Kth
            // smallest element
            return num;
        }
    }
}
  
// Driver Code
int main()
{
    // Given array
    int arr[] = { 7, 1, 4, 4, 20, 15, 8 };
  
    int N = sizeof(arr) / sizeof(arr[0]);
  
    int K = 5;
  
    // Function Call
    cout << findKthSmallest(arr, N, K);
  
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
  
class GFG {
  
    // Function to find the Kth smallest
    // element in Unsorted Array
    static int findKthSmallest(int[] arr, int n, int k)
    {
  
        // Initialize the max Element as 0
        int max = 0;
  
        // Iterate arr[] and find the maximum
        // element in it
        for (int i = 0; i < n; i++) 
        {
            if (arr[i] > max)
                max = arr[i];
        }
  
        // Frequency array to store
        // the frequencies
        int[] counter = new int[max + 1];
  
        // Counter variable
        int smallest = 0;
  
        // Counting the frequencies
        for (int i = 0; i < n; i++) 
        {
            counter[arr[i]]++;
        }
  
        // Iterate through the freq[]
        for (int num = 1; num <= max; num++)
        {
            // Check if num is present
            // in the array
            if (counter[num] > 0)
            {
                // Increment the counter
                // with the frequency
                // of num
                smallest += counter[num];
            }
  
            // Checking if we have reached
            // the Kth smallest element
            if (smallest >= k)
            {
                // Return the Kth
                // smallest element
                return num;
            }
        }
        return -1;
    }
  
    // Driver code
    public static void main(String[] args)
    {
        // Given array
        int[] arr = { 7, 1, 4, 4, 20, 15, 8 };
  
        int N = arr.length;
  
        int K = 5;
  
        // Function call
        System.out.print(findKthSmallest(arr, N, K));
    }
}


Python3




# Python3 program for the 
# above approach
  
# Function to find the Kth 
# smallest element in Unsorted
# Array
def findKthSmallest(arr, n, k):
  
    # Initialize the max 
    # Element as 0
    max = 0
  
    # Iterate arr[] and find 
    # the maximum element in it
    for i in range(n):
        if (arr[i] > max):
            max = arr[i]
  
    # Frequency array to 
    # store the frequencies
    counter = [0] * (max + 1)
  
    # Counter variable
    smallest = 0
  
    # Counting the frequencies
    for i in range(n):
        counter[arr[i]] += 1
  
    # Iterate through the freq[]
    for num in range(1, max + 1):
  
        # Check if num is present
        # in the array
        if (counter[num] > 0):
  
            # Increment the counter
            # with the frequency
            # of num
            smallest += counter[num]
  
        # Checking if we have reached
        # the Kth smallest element
        if (smallest >= k):
  
            # Return the Kth
            # smallest element
            return num
  
# Driver Code
if __name__ == "__main__":
  
    # Given array
    arr = [7, 1, 4, 4
           20, 15, 8]
  
    N = len(arr)
    K = 5
  
    # Function Call
    print(findKthSmallest(arr, N, K))
  
# This code is contributed by Chitranayal


C#




// C# program for the 
// above approach
using System;
using System.Collections.Generic;
class GFG{
  
// Function to find the Kth smallest
// element in Unsorted Array
static int findKthSmallest(int[] arr, 
                           int n, int k)
{
  // Initialize the max 
  // Element as 0
  int max = 0;
  
  // Iterate []arr and find 
  // the maximum element in it
  for (int i = 0; i < n; i++) 
  {
    if (arr[i] > max)
      max = arr[i];
  }
  
  // Frequency array to store
  // the frequencies
  int[] counter = new int[max + 1];
  
  // Counter variable
  int smallest = 0;
  
  // Counting the frequencies
  for (int i = 0; i < n; i++) 
  {
    counter[arr[i]]++;
  }
  
  // Iterate through the []freq
  for (int num = 1; 
           num <= max; num++)
  {
    // Check if num is present
    // in the array
    if (counter[num] > 0)
    {
      // Increment the counter
      // with the frequency
      // of num
      smallest += counter[num];
    }
  
    // Checking if we have reached
    // the Kth smallest element
    if (smallest >= k)
    {
      // Return the Kth
      // smallest element
      return num;
    }
  }
  return -1;
}
  
// Driver code
public static void Main(String[] args)
{
  // Given array
  int[] arr = {7, 1, 4, 4, 
               20, 15, 8};
  int N = arr.Length;
  int K = 5;
  
  // Function call
  Console.Write(findKthSmallest(arr, 
                                N, K));
}
}
  
// This code is contributed by shikhasingrajput


Javascript




<script>
  
// JavaScript program for the above approach
  
    // Function to find the Kth smallest
    // element in Unsorted Array
    function findKthSmallest(arr, n, k)
    {
  
        // Initialize the max Element as 0
        let max = 0;
  
        // Iterate arr[] and find the maximum
        // element in it
        for (let i = 0; i < n; i++) 
        {
            if (arr[i] > max)
                max = arr[i];
        }
  
        // Frequency array to store
        // the frequencies
        let counter = Array.from({length: max + 1}, (_, i) => 0); 
  
        // Counter variable
        let smallest = 0;
  
        // Counting the frequencies
        for (let i = 0; i < n; i++) 
        {
            counter[arr[i]]++;
        }
  
        // Iterate through the freq[]
        for (let num = 1; num <= max; num++)
        {
            // Check if num is present
            // in the array
            if (counter[num] > 0)
            {
                // Increment the counter
                // with the frequency
                // of num
                smallest += counter[num];
            }
  
            // Checking if we have reached
            // the Kth smallest element
            if (smallest >= k)
            {
                // Return the Kth
                // smallest element
                return num;
            }
        }
        return -1;
    }
   
// Driver Code
  
    // Given array
        let arr = [ 7, 1, 4, 4, 20, 15, 8 ];
  
        let N = arr.length;
  
        let K = 5;
  
        // Function call
        document.write(findKthSmallest(arr, N, K));
   
 // This code is contributed by sanjoy_62.
</script>


Output

8

Time complexity: O(N+MaxElement) where N is the number of elements in the given array, and MaxElement is the maximum number in the array. Pseudo Linear-Time complexity. 
Auxiliary Space: O(M) where M is the maximum element in the given array.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments