Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIKth smallest element in the array using constant space when array can’t...

Kth smallest element in the array using constant space when array can’t be modified

Given an array arr[] of size N having no duplicates and an integer K, the task is to find the Kth smallest element from the array in constant extra space and the array can’t be modified.

Examples: 

Input: arr[] = {7, 10, 4, 3, 20, 15}, K = 3 
Output:
Given array in sorted is {3, 4, 7, 10, 15, 20} 
where 7 is the third smallest element.

Input: arr[] = {12, 3, 5, 7, 19}, K = 2 
Output:
 

Approach: First we find the min and max elements from the array. Then we set low = min, high = max and mid = (low + high) / 2
Now, perform a modified binary search, and for each mid we count the number of elements less than mid and equal to mid. If countLess < k and countLess + countEqual ? k then mid is our answer, else we have to modify our low and high.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the kth smallest
// element from the array
int kthSmallest(int* arr, int k, int n)
{
 
    // Minimum and maximum element from the array
    int low = *min_element(arr, arr + n);
    int high = *max_element(arr, arr + n);
 
    // Modified binary search
    while (low <= high) {
 
        int mid = low + (high - low) / 2;
 
        // To store the count of elements from the array
        // which are less than mid and
        // the elements which are equal to mid
        int countless = 0, countequal = 0;
        for (int i = 0; i < n; ++i) {
            if (arr[i] < mid)
                ++countless;
            else if (arr[i] == mid)
                ++countequal;
        }
 
        // If mid is the kth smallest
        if (countless < k
            && (countless + countequal) >= k) {
            return mid;
        }
 
        // If the required element is less than mid
        else if (countless >= k) {
            high = mid - 1;
        }
 
        // If the required element is greater than mid
        else if (countless < k
                 && countless + countequal < k) {
            low = mid + 1;
        }
    }
}
 
// Driver code
int main()
{
    int arr[] = { 7, 10, 4, 3, 20, 15 };
    int n = sizeof(arr) / sizeof(int);
    int k = 3;
 
    cout << kthSmallest(arr, k, n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
// Function to return the kth smallest
// element from the array
static int kthSmallest(int[] arr, int k, int n)
{
 
    // Minimum and maximum element from the array
    int low = Arrays.stream(arr).min().getAsInt();
    int high = Arrays.stream(arr).max().getAsInt();
 
    // Modified binary search
    while (low <= high)
    {
 
        int mid = low + (high - low) / 2;
 
        // To store the count of elements from the array
        // which are less than mid and
        // the elements which are equal to mid
        int countless = 0, countequal = 0;
        for (int i = 0; i < n; ++i)
        {
            if (arr[i] < mid)
                ++countless;
            else if (arr[i] == mid)
                ++countequal;
        }
 
        // If mid is the kth smallest
        if (countless < k
            && (countless + countequal) >= k)
        {
            return mid;
        }
 
        // If the required element is less than mid
        else if (countless >= k)
        {
            high = mid - 1;
        }
 
        // If the required element is greater than mid
        else if (countless < k
                && countless + countequal < k)
        {
            low = mid + 1;
        }
    }
    return Integer.MIN_VALUE;
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 7, 10, 4, 3, 20, 15 };
    int n = arr.length;
    int k = 3;
 
    System.out.println(kthSmallest(arr, k, n));
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 implementation of the approach
 
# Function to return the kth smallest
# element from the array
def kthSmallest(arr, k, n) :
 
    # Minimum and maximum element from the array
    low = min(arr);
    high = max(arr);
 
    # Modified binary search
    while (low <= high) :
 
        mid = low + (high - low) // 2;
 
        # To store the count of elements from the array
        # which are less than mid and
        # the elements which are equal to mid
        countless = 0; countequal = 0;
         
        for i in range(n) :
             
            if (arr[i] < mid) :
                countless += 1;
                 
            elif (arr[i] == mid) :
                countequal += 1;
 
 
        # If mid is the kth smallest
        if (countless < k and (countless + countequal) >= k) :
            return mid;
         
 
        # If the required element is less than mid
        elif (countless >= k) :
            high = mid - 1;
 
        # If the required element is greater than mid
        elif (countless < k and countless + countequal < k) :
            low = mid + 1;
     
# Driver code
if __name__ == "__main__" :
     
    arr = [ 7, 10, 4, 3, 20, 15 ];
    n = len(arr);
    k = 3;
 
    print(kthSmallest(arr, k, n));
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
using System.Linq;
 
class GFG
{
 
// Function to return the kth smallest
// element from the array
static int kthSmallest(int[] arr, int k, int n)
{
 
    // Minimum and maximum element from the array
    int low = arr.Min();
    int high = arr.Max();
 
    // Modified binary search
    while (low <= high)
    {
 
        int mid = low + (high - low) / 2;
 
        // To store the count of elements from the array
        // which are less than mid and
        // the elements which are equal to mid
        int countless = 0, countequal = 0;
        for (int i = 0; i < n; ++i)
        {
            if (arr[i] < mid)
                ++countless;
            else if (arr[i] == mid)
                ++countequal;
        }
 
        // If mid is the kth smallest
        if (countless < k
            && (countless + countequal) >= k)
        {
            return mid;
        }
 
        // If the required element is less than mid
        else if (countless >= k)
        {
            high = mid - 1;
        }
 
        // If the required element is greater than mid
        else if (countless < k
                && countless + countequal < k)
        {
            low = mid + 1;
        }
    }
    return int.MinValue;
}
 
// Driver code
public static void Main(String[] args)
{
    int []arr = { 7, 10, 4, 3, 20, 15 };
    int n = arr.Length;
    int k = 3;
 
    Console.WriteLine(kthSmallest(arr, k, n));
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// JavaScript implementation of the approach
 
 
// Function to return the kth smallest
// element from the array
function kthSmallest(arr, k, n) {
 
    let temp = [...arr];
    // Minimum and maximum element from the array
    let low = temp.sort((a, b) => a - b)[0];
    let high = temp[temp.length - 1];
 
    // Modified binary search
    while (low <= high) {
 
        let mid = low + Math.floor((high - low) / 2);
 
        // To store the count of elements from the array
        // which are less than mid and
        // the elements which are equal to mid
        let countless = 0, countequal = 0;
        for (let i = 0; i < n; ++i) {
            if (arr[i] < mid)
                ++countless;
            else if (arr[i] == mid)
                ++countequal;
        }
 
        // If mid is the kth smallest
        if (countless < k
            && (countless + countequal) >= k) {
            return mid;
        }
 
        // If the required element is less than mid
        else if (countless >= k) {
            high = mid - 1;
        }
 
        // If the required element is greater than mid
        else if (countless < k
            && countless + countequal < k) {
            low = mid + 1;
        }
    }
}
 
// Driver code
 
let arr = [7, 10, 4, 3, 20, 15];
let n = arr.length;
let k = 3;
 
document.write(kthSmallest(arr, k, n));
 
 
// This code is contributed by gfgking
 
</script>


Output

7

Time Complexity: O(N log(Max – Min)) where Max and Min are the maximum and minimum elements from the array respectively and N is the size of the array.
Auxiliary Space: O(1), no extra space is required, so it is a constant.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments