Saturday, January 4, 2025
Google search engine
HomeData Modelling & AIKth node in Diagonal Traversal of Binary Tree

Kth node in Diagonal Traversal of Binary Tree

Given a binary tree and a value K. The task is to print the k-th node in the diagonal traversal of the binary tree. If no such node exists then print -1.
Examples: 
 

Input : 
         8
       /   \
      3    10
     /    /  \
    1    6   14
        / \  /
       4  7 13
k = 5
Output : 6
Diagonal Traversal of the above tree is:
8 10 14
3 6 7 13
1 4

Input :
       1
      / \
     2   3
    /     \
   4       5
k = 7   
Output : -1

 

Approach: The idea is to perform the diagonal traversal of the binary tree until K nodes are visited in the diagonal traversal. While traversing for each node visited decrement the value of variable K and return the current node when the value of K becomes zero. If the diagonal traversal does not contain at least K nodes, return -1.
Below is the implementation of the above approach: 
 

C++




// C++ program to print kth node
// in the diagonal traversal of a binary tree
 
#include <bits/stdc++.h>
using namespace std;
 
// A binary tree node has data, pointer to left
// child and a pointer to right child
struct Node {
    int data;
    Node *left, *right;
};
 
// Helper function that allocates a new node
Node* newNode(int data)
{
    Node* node = new Node();
    node->data = data;
    node->left = node->right = NULL;
    return (node);
}
 
// Iterative function to print kth node
// in diagonal traversal of binary tree
int diagonalPrint(Node* root, int k)
{
    // Base cases
    if (root == NULL || k == 0)
        return -1;
 
    int ans = -1;
    queue<Node*> q;
 
    // Push root node
    q.push(root);
 
    // Push delimiter NULL
    q.push(NULL);
 
    while (!q.empty()) {
        Node* temp = q.front();
        q.pop();
 
        if (temp == NULL) {
            if (q.empty()) {
                // If kth node exists then return
                // the answer
                if (k == 0)
                    return ans;
 
                // If kth node doesnt exists
                // then break from the while loop
                else
                    break;
            }
            q.push(NULL);
        }
        else {
            while (temp) {
                // If the required kth node
                // has been found then return the answer
                if (k == 0)
                    return ans;
 
                k--;
 
                // Update the value of variable ans
                // each time
                ans = temp->data;
 
                if (temp->left)
                    q.push(temp->left);
 
                temp = temp->right;
            }
        }
    }
 
    // If kth node doesnt exists then
    // return -1
    return -1;
}
 
// Driver Code
int main()
{
    Node* root = newNode(8);
    root->left = newNode(3);
    root->right = newNode(10);
    root->left->left = newNode(1);
    root->left->right = newNode(6);
    root->right->right = newNode(14);
    root->right->right->left = newNode(13);
    root->left->right->left = newNode(4);
    root->left->right->right = newNode(7);
 
    int k = 9;
 
    cout << diagonalPrint(root, k);
 
    return 0;
}


Java




// Java program to print kth node
// in the diagonal traversal of a binary tree
import java.util.*;
 
class GFG
{
     
// A binary tree node has data, pointer to left
//child and a pointer to right child
static class Node
{
    int data;
    Node left, right;
};
 
// Helper function that allocates a new node
static Node newNode(int data)
{
    Node node = new Node();
    node.data = data;
    node.left = node.right = null;
    return (node);
}
 
// Iterative function to print kth node
// in diagonal traversal of binary tree
static int diagonalPrint(Node root, int k)
{
    // Base cases
    if (root == null || k == 0)
        return -1;
 
    int ans = -1;
    Queue<Node> q = new LinkedList<Node>();
 
    // add root node
    q.add(root);
 
    // add delimiter null
    q.add(null);
 
    while (q.size() > 0)
    {
        Node temp = q.peek();
        q.remove();
 
        if (temp == null)
        {
            if (q.size() == 0)
            {
                // If kth node exists then return
                // the answer
                if (k == 0)
                    return ans;
 
                // If kth node doesnt exists
                // then break from the while loop
                else
                    break;
            }
            q.add(null);
        }
        else {
            while (temp != null)
            {
                // If the required kth node
                // has been found then return the answer
                if (k == 0)
                    return ans;
 
                k--;
 
                // Update the value of variable ans
                // each time
                ans = temp.data;
 
                if (temp.left!=null)
                    q.add(temp.left);
 
                temp = temp.right;
            }
        }
    }
 
    // If kth node doesnt exists then
    // return -1
    return -1;
}
 
// Driver Code
public static void main(String args[])
{
    Node root = newNode(8);
    root.left = newNode(3);
    root.right = newNode(10);
    root.left.left = newNode(1);
    root.left.right = newNode(6);
    root.right.right = newNode(14);
    root.right.right.left = newNode(13);
    root.left.right.left = newNode(4);
    root.left.right.right = newNode(7);
 
    int k = 9;
 
    System.out.println( diagonalPrint(root, k));
}
}
 
// This code is contributed by Arnab Kundu


Python3




# Python program to print kth node
# in the diagonal traversal of a binary tree
 
# Linked List node
class Node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
 
# Helper function that allocates a new node
def newNode(data) :
 
    node = Node(0)
    node.data = data
    node.left = node.right = None
    return (node)
 
# Iterative function to print kth node
# in diagonal traversal of binary tree
def diagonalPrint( root, k) :
 
    # Base cases
    if (root == None or k == 0) :
        return -1
 
    ans = -1
    q = []
 
    # append root node
    q.append(root)
 
    # append delimiter None
    q.append(None)
 
    while (len(q) > 0):
     
        temp = q[0]
        q.pop(0)
 
        if (temp == None):
         
            if (len(q) == 0) :
             
                # If kth node exists then return
                # the answer
                if (k == 0) :
                    return ans
 
                # If kth node doesnt exists
                # then break from the while loop
                else:
                    break
             
            q.append(None)
         
        else :
            while (temp != None):
             
                # If the required kth node
                # has been found then return the answer
                if (k == 0) :
                    return ans
 
                k = k - 1
 
                # Update the value of variable ans
                # each time
                ans = temp.data
 
                if (temp.left != None):
                    q.append(temp.left)
 
                temp = temp.right
             
    # If kth node doesnt exists then
    # return -1
    return -1
 
# Driver Code
 
root = newNode(8)
root.left = newNode(3)
root.right = newNode(10)
root.left.left = newNode(1)
root.left.right = newNode(6)
root.right.right = newNode(14)
root.right.right.left = newNode(13)
root.left.right.left = newNode(4)
root.left.right.right = newNode(7)
 
k = 9
 
print( diagonalPrint(root, k))
 
# This code is contributed by Arnab Kundu


C#




// C# program to print kth node
// in the diagonal traversal of a binary tree
using System;
using System.Collections.Generic;
 
class GFG
{
     
// A binary tree node has data, pointer to left
//child and a pointer to right child
public class Node
{
    public int data;
    public Node left, right;
};
 
// Helper function that allocates a new node
static Node newNode(int data)
{
    Node node = new Node();
    node.data = data;
    node.left = node.right = null;
    return (node);
}
 
// Iterative function to print kth node
// in diagonal traversal of binary tree
static int diagonalPrint(Node root, int k)
{
    // Base cases
    if (root == null || k == 0)
        return -1;
 
    int ans = -1;
    Queue<Node> q = new Queue<Node>();
 
    // Enqueue root node
    q.Enqueue(root);
 
    // Enqueue delimiter null
    q.Enqueue(null);
 
    while (q.Count > 0)
    {
        Node temp = q.Peek();
        q.Dequeue();
 
        if (temp == null)
        {
            if (q.Count == 0)
            {
                // If kth node exists then return
                // the answer
                if (k == 0)
                    return ans;
 
                // If kth node doesnt exists
                // then break from the while loop
                else
                    break;
            }
            q.Enqueue(null);
        }
        else
        {
            while (temp != null)
            {
                // If the required kth node
                // has been found then return the answer
                if (k == 0)
                    return ans;
 
                k--;
 
                // Update the value of variable ans
                // each time
                ans = temp.data;
 
                if (temp.left!=null)
                    q.Enqueue(temp.left);
 
                temp = temp.right;
            }
        }
    }
 
    // If kth node doesnt exists then
    // return -1
    return -1;
}
 
// Driver Code
public static void Main(String []args)
{
    Node root = newNode(8);
    root.left = newNode(3);
    root.right = newNode(10);
    root.left.left = newNode(1);
    root.left.right = newNode(6);
    root.right.right = newNode(14);
    root.right.right.left = newNode(13);
    root.left.right.left = newNode(4);
    root.left.right.right = newNode(7);
 
    int k = 9;
 
    Console.WriteLine( diagonalPrint(root, k));
}
}
 
/* This code is contributed by PrinciRaj1992 */


Javascript




<script>
 
// JavaScript program to print kth node
// in the diagonal traversal of a binary tree
   
// A binary tree node has data, pointer to left
//child and a pointer to right child
class Node
{
    constructor()
    {
        this.data = 0;
        this.left = null;
        this.right = null;
    }
};
 
// Helper function that allocates a new node
function newNode(data)
{
    var node = new Node();
    node.data = data;
    node.left = node.right = null;
    return (node);
}
 
// Iterative function to print kth node
// in diagonal traversal of binary tree
function diagonalPrint(root, k)
{
    // Base cases
    if (root == null || k == 0)
        return -1;
 
    var ans = -1;
    var q = [];
 
    // push root node
    q.push(root);
 
    // push delimiter null
    q.push(null);
 
    while (q.length > 0)
    {
        var temp = q[0];
        q.shift();
 
        if (temp == null)
        {
            if (q.length == 0)
            {
                // If kth node exists then return
                // the answer
                if (k == 0)
                    return ans;
 
                // If kth node doesnt exists
                // then break from the while loop
                else
                    break;
            }
            q.push(null);
        }
        else
        {
            while (temp != null)
            {
                // If the required kth node
                // has been found then return the answer
                if (k == 0)
                    return ans;
 
                k--;
 
                // Update the value of variable ans
                // each time
                ans = temp.data;
 
                if (temp.left!=null)
                    q.push(temp.left);
 
                temp = temp.right;
            }
        }
    }
 
    // If kth node doesnt exists then
    // return -1
    return -1;
}
 
// Driver Code
var root = newNode(8);
root.left = newNode(3);
root.right = newNode(10);
root.left.left = newNode(1);
root.left.right = newNode(6);
root.right.right = newNode(14);
root.right.right.left = newNode(13);
root.left.right.left = newNode(4);
root.left.right.right = newNode(7);
var k = 9;
document.write( diagonalPrint(root, k));
 
 
 
</script>


Output: 

4

 

Time Complexity: O(N), where N is the total number of nodes in the binary tree. 
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments