Friday, January 10, 2025
Google search engine
HomeData Modelling & AIKth largest odd number in a given range

Kth largest odd number in a given range

Given two variables L and R, indicating a range of integers from L to R inclusive, and a number K, the task is to find Kth largest odd number. If K > number of odd numbers in the range L to R then return 0.

Examples:

Input: L = -10, R = 10, K = 8
Output: -5
Explanation:  The odd Numbers in the range are -9, -7, -5, -3, -1, 1, 3, 5, 7, 9 and the 8th Largest odd number is -5

Input: L = -3, R = 3, K = 1
Output: 3

 

Approach: The given problem can be solved using mathematics. The idea is to check if R is odd or even and calculate Kth largest odd number accordingly. Below steps can be used to solve the problem:

  • If K<=0 then return 0
  • Initialize count to calculate the number of odd numbers within the range
  • If R is odd:
    • count = ceil((float)(R-L+1)/2)
    • If K > count return 0
  • Else return (R – 2*K + 2)
  • If R is even
    • count = floor((R-L+1)/2)
    • If K > count return 0
    • Else return (R – 2*K + 1)

Below is the implementation of the above approach: 

C++




// C++ implementation for the above approach
 
#include <cmath>
#include <iostream>
using namespace std;
 
// Function to return Kth largest
// odd number if it exists
int kthOdd(pair<int, int> range, int K)
{
 
    // Base Case
    if (K <= 0)
        return 0;
 
    int L = range.first;
    int R = range.second;
 
    if (R & 1) {
 
        // Calculate count of odd
        // numbers within the range
        int Count = ceil((float)(R - L + 1) / 2);
 
        // if k > range then kth largest
        // odd number is not in the range
        if (K > Count)
            return 0;
 
        else
            return (R - 2 * K + 2);
    }
    else {
 
        // Calculate count of odd
        // numbers within the range
        int Count = (R - L + 1) / 2;
 
        // If k > range then kth largest
        // odd number is not in this range
        if (K > Count)
            return 0;
 
        else
            return (R - 2 * K + 1);
    }
}
 
// Driver Code
int main()
{
    // Initialize the range
    pair<int, int> p = { -10, 10 };
 
    // Initialize k
    int k = 8;
 
    // print the kth odd number
    cout << kthOdd(p, k);
 
    return 0;
}


Java




// Java implementation for the above approach
class GFG {
 
    // Function to return Kth largest
    // odd number if it exists
    public static int kthOdd(int[] range, int K) {
 
        // Base Case
        if (K <= 0)
            return 0;
 
        int L = range[0];
        int R = range[1];
 
        if ((R & 1) > 0) {
 
            // Calculate count of odd
            // numbers within the range
            int Count = (int) Math.ceil((R - L + 1) / 2);
 
            // if k > range then kth largest
            // odd number is not in the range
            if (K > Count)
                return 0;
 
            else
                return (R - 2 * K + 2);
        } else {
 
            // Calculate count of odd
            // numbers within the range
            int Count = (R - L + 1) / 2;
 
            // If k > range then kth largest
            // odd number is not in this range
            if (K > Count)
                return 0;
 
            else
                return (R - 2 * K + 1);
        }
    }
 
    // Driver Code
    public static void main(String args[])
    {
       
        // Initialize the range
        int[] p = { -10, 10 };
 
        // Initialize k
        int k = 8;
 
        // print the kth odd number
        System.out.println(kthOdd(p, k));
    }
}
 
// This code is contributed by gfgking.


Python3




# python implementation for the above approach
import math
 
# Function to return Kth largest
# odd number if it exists
def kthOdd(range, K):
 
    # Base Case
    if (K <= 0):
        return 0
 
    L = range[0]
    R = range[1]
 
    if (R & 1):
 
        # Calculate count of odd
        # numbers within the range
        Count = math.ceil((R - L + 1) / 2)
 
        # if k > range then kth largest
        # odd number is not in the range
        if (K > Count):
            return 0
 
        else:
            return (R - 2 * K + 2)
 
    else:
 
        # Calculate count of odd
        # numbers within the range
        Count = (R - L + 1) // 2
 
        # If k > range then kth largest
        # odd number is not in this range
        if (K > Count):
            return 0
 
        else:
            return (R - 2 * K + 1)
 
# Driver Code
if __name__ == "__main__":
 
    # Initialize the range
    p = [-10, 10]
 
    # Initialize k
    k = 8
 
    # print the kth odd number
    print(kthOdd(p, k))
 
# This code is contributed by rakeshsahni


C#




// C# code for the above approach
using System;
 
public class GFG
{
 
    // Function to return Kth largest
    // odd number if it exists
    public static int kthOdd(int[] range, int K) {
  
        // Base Case
        if (K <= 0)
            return 0;
  
        int L = range[0];
        int R = range[1];
  
        if ((R & 1) > 0) {
  
            // Calculate count of odd
            // numbers within the range
            int Count = ((R - L + 1) / 2);
  
            // if k > range then kth largest
            // odd number is not in the range
            if (K > Count)
                return 0;
  
            else
                return (R - 2 * K + 2);
        } else {
  
            // Calculate count of odd
            // numbers within the range
            int Count = (R - L + 1) / 2;
  
            // If k > range then kth largest
            // odd number is not in this range
            if (K > Count)
                return 0;
  
            else
                return (R - 2 * K + 1);
        }
    }
 
    // Driver Code
    public static void Main(string[] args)
    {
       
        // Initialize the range
        int[] p = { -10, 10 };
  
        // Initialize k
        int k = 8;
  
        // print the kth odd number
        Console.WriteLine(kthOdd(p, k));
    }
}
 
// This code is contributed by sanjoy_62.


Javascript




<script>
        // JavaScript Program to implement
        // the above approach
 
        // Function to return Kth largest
        // odd number if it exists
        function kthOdd(range, K) {
 
            // Base Case
            if (K <= 0)
                return 0;
 
            let L = range.first;
            let R = range.second;
 
            if (R & 1) {
 
                // Calculate count of odd
                // numbers within the range
                let Count = Math.ceil((R - L + 1) / 2);
 
                // if k > range then kth largest
                // odd number is not in the range
                if (K > Count)
                    return 0;
 
                else
                    return (R - 2 * K + 2);
            }
            else {
 
                // Calculate count of odd
                // numbers within the range
                let Count = (R - L + 1) / 2;
 
                // If k > range then kth largest
                // odd number is not in this range
                if (K > Count)
                    return 0;
 
                else
                    return (R - 2 * K + 1);
            }
        }
 
        // Driver Code
 
        // Initialize the range
        let p = { first: -10, second: 10 };
 
        // Initialize k
        let k = 8;
 
        // print the kth odd number
        document.write(kthOdd(p, k));
 
    // This code is contributed by Potta Lokesh
    </script>


Output

-5

Time Complexity: O(1)
Auxiliary Space: O(1)

Approach: using NumPy:

Python3




import numpy as np
 
def kth_largest_odd_number(start, end, k):
    # create an array of odd numbers within the range
    odd_numbers = np.array([x for x in range(start, end+1) if x % 2 != 0])
     
    # sort the array in descending order
    sorted_odd_numbers = np.sort(odd_numbers)[::-1]
     
    # return the kth largest odd number
    return sorted_odd_numbers[k-1]
 
if __name__ == '__main__':
    start = -10
    end = 10
    k = 8
    result = kth_largest_odd_number(start, end, k)
    print(result)


output

-5

Time Complexity: O(1)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments