Given a knapsack with capacity C and two arrays w[] and val[] representing the weights and values of N distinct items, the task is to find the maximum value you can put into the knapsack. Items cannot be broken and an item with weight X takes X capacity of the knapsack.
Examples:
Input: w[] = {3, 4, 5}, val[] = {30, 50, 60}, C = 8
Output: 90
We take objects ‘1’ and ‘3’.
The total value we get is (30 + 60) = 90.
Total weight is 8, thus it fits in the given capacityInput: w[] = {10000}, val[] = {10}, C = 100000
Output: 10
Approach: The traditional famous 0-1 knapsack problem can be solved in O(N*C) time but if the capacity of the knapsack is huge then a 2D N*C array can’t make be made. Luckily, it can be solved by redefining the states of the dp.
Let’s have a look at the states of the DP first.
dp[V][i] represents the minimum weight subset of the subarray arr[i…N-1] required to get a value of at least V. The recurrence relation will be:
dp[V][i] = min(dp[V][i+1], w[i] + dp[V – val[i]][i + 1])
So, for each V from 0 to the maximum value of V possible, try to find if the given V can be represented with the given array. The largest such V that can be represented becomes the required answer.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; #define V_SUM_MAX 1000 #define N_MAX 100 #define W_MAX 10000000 // To store the states of DP int dp[V_SUM_MAX + 1][N_MAX]; bool v[V_SUM_MAX + 1][N_MAX]; // Function to solve the recurrence relation int solveDp( int r, int i, vector< int >& w, vector< int >& val, int n) { // Base cases if (r <= 0) return 0; if (i == n) return W_MAX; if (v[r][i]) return dp[r][i]; // Marking state as solved v[r][i] = 1; // Recurrence relation dp[r][i] = min(solveDp(r, i + 1, w, val, n), w[i] + solveDp(r - val[i], i + 1, w, val, n)); return dp[r][i]; } // Function to return the maximum weight int maxWeight(vector< int >& w, vector< int >& val, int n, int c) { // Iterating through all possible values // to find the largest value that can // be represented by the given weights for ( int i = V_SUM_MAX; i >= 0; i--) { if (solveDp(i, 0, w, val, n) <= c) { return i; } } return 0; } // Driver code int main() { vector< int > w = { 3, 4, 5 }; vector< int > val = { 30, 50, 60 }; int n = ( int )w.size(); int C = 8; cout << maxWeight(w, val, n, C); return 0; } |
Java
// Java implementation of the approach class GFG { static final int V_SUM_MAX = 1000 ; static final int N_MAX = 100 ; static final int W_MAX = 10000000 ; // To store the states of DP static int dp[][] = new int [V_SUM_MAX + 1 ][N_MAX]; static boolean v[][] = new boolean [V_SUM_MAX + 1 ][N_MAX]; // Function to solve the recurrence relation static int solveDp( int r, int i, int w[], int val[], int n) { // Base cases if (r <= 0 ) return 0 ; if (i == n) return W_MAX; if (v[r][i]) return dp[r][i]; // Marking state as solved v[r][i] = true ; // Recurrence relation dp[r][i] = Math.min(solveDp(r, i + 1 , w, val, n), w[i] + solveDp(r - val[i], i + 1 , w, val, n)); return dp[r][i]; } // Function to return the maximum weight static int maxWeight( int w[], int val[], int n, int c) { // Iterating through all possible values // to find the largest value that can // be represented by the given weights for ( int i = V_SUM_MAX; i >= 0 ; i--) { if (solveDp(i, 0 , w, val, n) <= c) { return i; } } return 0 ; } // Driver code public static void main (String[] args) { int w[] = { 3 , 4 , 5 }; int val[] = { 30 , 50 , 60 }; int n = w.length; int C = 8 ; System.out.println(maxWeight(w, val, n, C)); } } // This code is contributed by AnkitRai01 |
Python3
# Python3 implementation of the approach V_SUM_MAX = 1000 N_MAX = 100 W_MAX = 10000000 # To store the states of DP dp = [[ 0 for i in range (N_MAX)] for i in range (V_SUM_MAX + 1 )] v = [[ 0 for i in range (N_MAX)] for i in range (V_SUM_MAX + 1 )] # Function to solve the recurrence relation def solveDp(r, i, w, val, n): # Base cases if (r < = 0 ): return 0 if (i = = n): return W_MAX if (v[r][i]): return dp[r][i] # Marking state as solved v[r][i] = 1 # Recurrence relation dp[r][i] = min (solveDp(r, i + 1 , w, val, n), w[i] + solveDp(r - val[i], i + 1 , w, val, n)) return dp[r][i] # Function to return the maximum weight def maxWeight( w, val, n, c): # Iterating through all possible values # to find the largest value that can # be represented by the given weights for i in range (V_SUM_MAX, - 1 , - 1 ): if (solveDp(i, 0 , w, val, n) < = c): return i return 0 # Driver code if __name__ = = '__main__' : w = [ 3 , 4 , 5 ] val = [ 30 , 50 , 60 ] n = len (w) C = 8 print (maxWeight(w, val, n, C)) # This code is contributed by Mohit Kumar |
C#
// C# implementation of the approach using System; class GFG { static readonly int V_SUM_MAX = 1000; static readonly int N_MAX = 100; static readonly int W_MAX = 10000000; // To store the states of DP static int [,]dp = new int [V_SUM_MAX + 1, N_MAX]; static bool [,]v = new bool [V_SUM_MAX + 1, N_MAX]; // Function to solve the recurrence relation static int solveDp( int r, int i, int []w, int []val, int n) { // Base cases if (r <= 0) return 0; if (i == n) return W_MAX; if (v[r, i]) return dp[r, i]; // Marking state as solved v[r, i] = true ; // Recurrence relation dp[r, i] = Math.Min(solveDp(r, i + 1, w, val, n), w[i] + solveDp(r - val[i], i + 1, w, val, n)); return dp[r, i]; } // Function to return the maximum weight static int maxWeight( int []w, int []val, int n, int c) { // Iterating through all possible values // to find the largest value that can // be represented by the given weights for ( int i = V_SUM_MAX; i >= 0; i--) { if (solveDp(i, 0, w, val, n) <= c) { return i; } } return 0; } // Driver code public static void Main(String[] args) { int []w = { 3, 4, 5 }; int []val = { 30, 50, 60 }; int n = w.Length; int C = 8; Console.WriteLine(maxWeight(w, val, n, C)); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // Javascript implementation of the approach var V_SUM_MAX = 1000 var N_MAX = 100 var W_MAX = 10000000 // To store the states of DP var dp = Array.from(Array(V_SUM_MAX+1), ()=> Array(N_MAX)); var v = Array.from(Array(V_SUM_MAX+1), ()=> Array(N_MAX)); // Function to solve the recurrence relation function solveDp(r, i, w, val, n) { // Base cases if (r <= 0) return 0; if (i == n) return W_MAX; if (v[r][i]) return dp[r][i]; // Marking state as solved v[r][i] = 1; // Recurrence relation dp[r][i] = Math.min(solveDp(r, i + 1, w, val, n), w[i] + solveDp(r - val[i], i + 1, w, val, n)); return dp[r][i]; } // Function to return the maximum weight function maxWeight(w, val, n, c) { // Iterating through all possible values // to find the largest value that can // be represented by the given weights for ( var i = V_SUM_MAX; i >= 0; i--) { if (solveDp(i, 0, w, val, n) <= c) { return i; } } return 0; } // Driver code var w = [3, 4, 5]; var val = [30, 50, 60]; var n = w.length; var C = 8; document.write( maxWeight(w, val, n, C)); </script> |
90
Time Complexity: O(V_sum * N) where V_sum is the sum of all the values in the array val[].
Auxiliary Space : O(V_sum * N) where V_sum is the sum of all the values in the array val[].
Efficient approach : Using DP Tabulation method ( Iterative approach )
The approach to solve this problem is same but DP tabulation(bottom-up) method is better then Dp + memoization(top-down) because memoization method needs extra stack space of recursion calls.
Steps to solve this problem :
- Create a table DP to store the solution of the subproblems.
- Initialize the table with base cases
- Now Iterate over subproblems to get the value of current problem form previous computation of subproblems stored in DP
- At last get the maximum value from DP and return the final solution.
Implementation :
C++
// C++ program for above approach #include <bits/stdc++.h> using namespace std; #define V_SUM_MAX 1000 #define N_MAX 100 #define W_MAX 10000000 // Function to return the maximum weight int maxWeight(vector< int >& w, vector< int >& val, int n, int c) { // Initialize dp array int dp[V_SUM_MAX + 1][N_MAX + 1]; for ( int i = 0; i <= V_SUM_MAX; i++) for ( int j = 0; j <= n; j++) dp[i][j] = W_MAX; // Base case initialization for ( int i = 0; i <= n; i++) dp[0][i] = 0; // iterate over subproblems ans get // the current value from previous computation for ( int i = 1; i <= V_SUM_MAX; i++) for ( int j = 1; j <= n; j++) dp[i][j] = min( dp[i][j - 1], (i >= val[j - 1]) ? w[j - 1] + dp[i - val[j - 1]][j - 1] : W_MAX); // Finding maximum value for ( int i = V_SUM_MAX; i >= 0; i--) if (dp[i][n] <= c) return i; return 0; } // Driver code int main() { vector< int > w = { 3, 4, 5 }; vector< int > val = { 30, 50, 60 }; int n = ( int )w.size(); int C = 8; cout << maxWeight(w, val, n, C); return 0; } |
Python3
import sys V_SUM_MAX = 1000 N_MAX = 100 W_MAX = 10000000 # Function to return the maximum weight def maxWeight(w, val, n, c): # Initialize dp array dp = [[W_MAX for j in range (n + 1 )] for i in range (V_SUM_MAX + 1 )] # Base case initialization for i in range (n + 1 ): dp[ 0 ][i] = 0 # iterate over subproblems ans get # the current value from previous computation for i in range ( 1 , V_SUM_MAX + 1 ): for j in range ( 1 , n + 1 ): dp[i][j] = min (dp[i][j - 1 ], w[j - 1 ] + dp[i - val[j - 1 ]] [j - 1 ] if i > = val[j - 1 ] else W_MAX) # Finding maximum value for i in range (V_SUM_MAX, - 1 , - 1 ): if dp[i][n] < = c: return i return 0 # Driver code if __name__ = = "__main__" : w = [ 3 , 4 , 5 ] val = [ 30 , 50 , 60 ] n = len (w) C = 8 print (maxWeight(w, val, n, C)) |
Java
import java.util.*; class Main { public static final int V_SUM_MAX = 1000 ; public static final int N_MAX = 100 ; public static final int W_MAX = 10000000 ; // Function to return the maximum weight public static int maxWeight(List<Integer> w, List<Integer> val, int n, int c) { // Initialize dp array int [][] dp = new int [V_SUM_MAX + 1 ][N_MAX + 1 ]; for ( int i = 0 ; i <= V_SUM_MAX; i++) { for ( int j = 0 ; j <= n; j++) { dp[i][j] = W_MAX; } } // Base case initialization for ( int i = 0 ; i <= n; i++) { dp[ 0 ][i] = 0 ; } // iterate over subproblems ans get // the current value from previous computation for ( int i = 1 ; i <= V_SUM_MAX; i++) { for ( int j = 1 ; j <= n; j++) { dp[i][j] = Math.min( dp[i][j - 1 ], (i >= val.get(j - 1 )) ? w.get(j - 1 ) + dp[i - val.get(j - 1 )] [j - 1 ] : W_MAX); } } // Finding maximum value for ( int i = V_SUM_MAX; i >= 0 ; i--) { if (dp[i][n] <= c) { return i; } } return 0 ; } // Driver code public static void main(String[] args) { List<Integer> w = new ArrayList<>(Arrays.asList( 3 , 4 , 5 )); List<Integer> val = new ArrayList<>(Arrays.asList( 30 , 50 , 60 )); int n = w.size(); int C = 8 ; System.out.println(maxWeight(w, val, n, C)); } } |
C#
using System; public class KnapsackMaxWeight { private const int V_SUM_MAX = 1000; private const int N_MAX = 100; private const int W_MAX = 10000000; public static int MaxWeight( int [] w, int [] val, int n, int c) { // Initialize dp array int [,] dp = new int [V_SUM_MAX + 1, N_MAX + 1]; for ( int i = 0; i <= V_SUM_MAX; i++) { for ( int j = 0; j <= n; j++) { dp[i, j] = W_MAX; } } // Base case initialization for ( int i = 0; i <= n; i++) { dp[0, i] = 0; } // iterate over subproblems ans get // the current value from previous computation for ( int i = 1; i <= V_SUM_MAX; i++) { for ( int j = 1; j <= n; j++) { dp[i, j] = Math.Min( dp[i, j - 1], (i >= val[j - 1]) ? w[j - 1] + dp[i - val[j - 1], j - 1] : W_MAX); } } // Finding maximum value for ( int i = V_SUM_MAX; i >= 0; i--) { if (dp[i, n] <= c) { return i; } } return 0; } public static void Main() { int [] w = { 3, 4, 5 }; int [] val = { 30, 50, 60 }; int n = w.Length; int c = 8; Console.WriteLine(MaxWeight(w, val, n, c)); } } |
Javascript
function MaxWeight(w, val, n, c) { // Initialize dp array const V_SUM_MAX = 1000; const N_MAX = 100; const W_MAX = 10000000; const dp = new Array(V_SUM_MAX + 1).fill().map(() => new Array(N_MAX + 1).fill(W_MAX)); // Base case initialization for (let i = 0; i <= n; i++) { dp[0][i] = 0; } // iterate over subproblems and get // the current value from previous computation for (let i = 1; i <= V_SUM_MAX; i++) { for (let j = 1; j <= n; j++) { dp[i][j] = Math.min( dp[i][j - 1], (i >= val[j - 1]) ? w[j - 1] + dp[i - val[j - 1]][j - 1] : W_MAX ); } } // Finding maximum value for (let i = V_SUM_MAX; i >= 0; i--) { if (dp[i][n] <= c) { return i; } } return 0; } const w = [3, 4, 5]; const val = [30, 50, 60]; const n = w.length; const c = 8; console.log(MaxWeight(w, val, n, c)); |
Output
90
Time Complexity: O(V_sum * N).
Auxiliary Space : O(V_sum * N).
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!