Saturday, September 6, 2025
HomeLanguagesPython – Power-Function Distribution in Statistics

Python – Power-Function Distribution in Statistics

scipy.stats.powerlaw() is a power-function continuous random variable. It is inherited from the of generic methods as an instance of the rv_continuous class. It completes the methods with details specific for this particular distribution.

Parameters :

q : lower and upper tail probability
x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : power-function continuous random variable

Code #1 : Creating power-function continuous random variable




# importing library
  
from scipy.stats import powerlaw
    
numargs = powerlaw.numargs 
a, b = 4.32, 3.18
rv = powerlaw(a, b) 
    
print ("RV : \n", rv)  


Output :

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9D8295B48

Code #2 : power-function continuous variates and probability distribution




import numpy as np 
quantile = np.arange (0.01, 1, 0.1
  
# Random Variates 
R = powerlaw.rvs(a, b) 
print ("Random Variates : \n", R) 
  
# PDF 
R = powerlaw.pdf(a, b, quantile) 
print ("\nProbability Distribution : \n", R) 


Output :

Random Variates : 
 3.860143037448123

Probability Distribution : 
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

Code #3 : Graphical Representation.




import numpy as np 
import matplotlib.pyplot as plt 
     
distribution = np.linspace(0, np.minimum(rv.dist.b, 3)) 
print("Distribution : \n", distribution) 
     
plot = plt.plot(distribution, rv.pdf(distribution)) 


Output :

Distribution : 
 [0.         0.02040816 0.04081633 0.06122449 0.08163265 0.10204082
 0.12244898 0.14285714 0.16326531 0.18367347 0.20408163 0.2244898
 0.24489796 0.26530612 0.28571429 0.30612245 0.32653061 0.34693878
 0.36734694 0.3877551  0.40816327 0.42857143 0.44897959 0.46938776
 0.48979592 0.51020408 0.53061224 0.55102041 0.57142857 0.59183673
 0.6122449  0.63265306 0.65306122 0.67346939 0.69387755 0.71428571
 0.73469388 0.75510204 0.7755102  0.79591837 0.81632653 0.83673469
 0.85714286 0.87755102 0.89795918 0.91836735 0.93877551 0.95918367
 0.97959184 1.        ]
 

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt 
import numpy as np 
     
x = np.linspace(0, 5, 100
     
# Varying positional arguments 
y1 = powerlaw .pdf(x, 1, 3, 5
y2 = powerlaw .pdf(x, 1, 4, 4
plt.plot(x, y1, "*", x, y2, "r--"


Output :

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32269 POSTS0 COMMENTS
Milvus
81 POSTS0 COMMENTS
Nango Kala
6638 POSTS0 COMMENTS
Nicole Veronica
11802 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11868 POSTS0 COMMENTS
Shaida Kate Naidoo
6752 POSTS0 COMMENTS
Ted Musemwa
7029 POSTS0 COMMENTS
Thapelo Manthata
6704 POSTS0 COMMENTS
Umr Jansen
6721 POSTS0 COMMENTS