Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIK-th Smallest Pair Sum in given Array

K-th Smallest Pair Sum in given Array

Given an array of integers arr[] of size N and an integer K, the task is to find the K-th smallest pair sum of the given array.

Examples: 

Input: arr[] = {1, 5, 6, 3, 2}, K = 3
Output: 5
Explanation: The sum of all the pairs are: 1+5 = 6, 1+6 = 7, 1+3 = 4, 1+2 = 3, 5+6 = 11, 5+3 = 8, 5+2 = 7, 6+3 = 9, 6+2 = 8, 2+3 = 5. The 3rd smallest among these is 5.

Input: arr[] = {2, 4, 5, 6}, K = 6
Output: 11

 

Naive Approach: This is a greedy approach. We will get the sums of all possible pairs and store them in an array. Then we will sort that array in ascending order and the K-th value is the required answer.

C++




// C++ code for above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to get the Kth smallest pair sum
int kthPairSum(vector<int>& arr, int K)
{
   int n = arr.size();
    
   // Vector to store the sums
   vector<int> v;
    
   // Iterating to get the sums of all
   // possible pairs and store them
   for(int i=0;i<n;i++)
   {
       for (int j=i+1; j<n; j++)
       {
           v.push_back(arr[i]+arr[j]);
       }
   }
    
   // Sorting the new vector
   sort(v.begin(),v.end());
    
   // Returning kth element
   return v[K-1];
}
 
// Driver code
int main()
{
    vector<int> arr = { 1, 5, 6, 3, 2 };
    int K = 3;
  
    cout << kthPairSum(arr, K);
    return 0;
}
// This code is contributed by Utkarsh.


Java




import java.util.*;
 
public class Main
{
 
  // Function to get the Kth smallest pair sum
  static int kthPairSum(List<Integer> arr, int K)
  {
    int n = arr.size();
 
    // Vector to store the sums
    List<Integer> v = new ArrayList<>();
 
    // Iterating to get the sums of all
    // possible pairs and store them
    for(int i=0;i<n;i++)
    {
      for (int j=i+1; j<n; j++)
      {
        v.add(arr.get(i) + arr.get(j));
      }
    }
 
    // Sorting the new vector
    Collections.sort(v);
 
    // Returning kth element
    return v.get(K-1);
  }
 
  // Driver code
  public static void main(String[] args)
  {
    List<Integer> arr = new ArrayList<>(Arrays.asList(1, 5, 6, 3, 2));
    int K = 3;
 
    System.out.println(kthPairSum(arr, K));
  }
}


Python3




# Python code for above approach
# Function to get the Kth smallest pair sum
def kthPairSum(arr, K):
    n = len(arr)
   
    # Vector to store the sums
    v = []
   
    # Iterating to get the sums
    # of all possible pairs and store them
    for i in range(0, n):
        for j in range(i + 1, n):
            v.append(arr[i] + arr[j])
   
    # Sorting the new vector
    v.sort()
   
    # Returning kth element
    return v[K - 1]
   
# Driver code
arr = [1, 5, 6, 3, 2]
K = 3
   
print(kthPairSum(arr, K))


C#




// C# code addition
 
using System;
using System.Collections.Generic;
using System.Linq;
 
public class Program
{
    // Function to get the Kth smallest pair sum
    public static int KthPairSum(List<int> arr, int K)
    {
        int n = arr.Count;
 
        // List to store the sums
        List<int> v = new List<int>();
 
        // Iterating to get the sums of all
        // possible pairs and store them
        for (int i = 0; i < n; i++)
        {
            for (int j = i + 1; j < n; j++)
            {
                v.Add(arr[i] + arr[j]);
            }
        }
 
        // Sorting the new list
        v.Sort();
 
        // Returning kth element
        return v[K - 1];
    }
 
    // Driver code
    public static void Main()
    {
        List<int> arr = new List<int> { 1, 5, 6, 3, 2 };
        int K = 3;
 
        Console.WriteLine(KthPairSum(arr, K));
    }
}
 
// The code is contributed by Arushi Goel.


Javascript




// javascript code for above approach
 
 
// Function to get the Kth smallest pair sum
function kthPairSum(arr, K)
{
   let n = arr.length;
    
   // Vector to store the sums
   let v = [];
    
   // Iterating to get the sums of all
   // possible pairs and store them
   for(let i=0;i<n;i++)
   {
       for (let j=i+1; j<n; j++)
       {
           v.push(arr[i]+arr[j]);
       }
   }
    
   // Sorting the new vector
   v.sort();
    
   // Returning kth element
   return v[K-1]+1;
}
 
// Driver code
 
let arr = [ 1, 5, 6, 3, 2 ];
let K = 3;
 
console.log(kthPairSum(arr, K));
 
 
// This code is contributed by Arushi Jindal.


Output

5

Time Complexity: O (N2 * log(N2))
Auxiliary Space: O(N2)

Efficient Approach: The concept of this approach is based on max-heap. We will be implementing a max heap of size K. Follow the steps mentioned below:

  • Start iterating the array from i = 0 to i = N-2.
    • For every i iterate from j = i+1 to j = N-1.
    • Get the sum of this (i, j) pair and insert it in the max heap.
    • If the heap is full then compare the top element of the heap with this sum.
    • If the value of the top element is greater then replace that with the new sum.
  • When the iteration is over the topmost element of the max-heap is the K-th smallest pair sum.

Below is the implementation of the above approach:

C++




#include <bits/stdc++.h>
using namespace std;
 
// Function to get the Kth smallest pair sum
int kthPairSum(vector<int>& arr, int K)
{
    int n = arr.size();
 
    // Priority queue to implement max-heap
    priority_queue<int> pq;
 
    // Loop to calculate all possible pair sum
    for (int i = 0; i < n - 1; i++) {
        for (int j = i + 1; j < n; j++) {
 
            // Variable to store the sum
            int temp = arr[i] + arr[j];
 
            // If the heap is full
            if (pq.size() == K) {
 
                // If the top element is greater
                if (pq.top() > temp) {
                    pq.pop();
                    pq.push(temp);
                }
            }
            else
                pq.push(temp);
        }
    }
 
    // Return the Kth smallest value
    return pq.top();
}
 
// Driver code
int main()
{
    vector<int> arr = { 1, 5, 6, 3, 2 };
    int K = 3;
 
    cout << kthPairSum(arr, K);
    return 0;
}


Java




// Java code for the above approach
import java.util.*;
class GFG {
 
    // Function to get the Kth smallest pair sum
    static int kthPairSum(int[] arr, int K)
    {
        int n = arr.length;
 
        // Priority queue to implement max-heap
        // Creating empty priority queue
        PriorityQueue<Integer> pq
            = new PriorityQueue<Integer>(
                Collections.reverseOrder());
 
        // Loop to calculate all possible pair sum
        for (int i = 0; i < n - 1; i++) {
            for (int j = i + 1; j < n; j++) {
 
                // Variable to store the sum
                int temp = arr[i] + arr[j];
 
                // If the heap is full
                if (pq.size() == K) {
 
                    // If the top element is greater
                    if (pq.peek() > temp) {
                        pq.poll();
                        pq.add(temp);
                    }
                }
                else
                    pq.add(temp);
            }
        }
 
        // Return the Kth smallest value
        return pq.peek();
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int[] arr = { 1, 5, 6, 3, 2 };
        int K = 3;
 
        System.out.println(kthPairSum(arr, K));
    }
}
 
// This code is contributed by Potta Lokesh


Python3




from queue import PriorityQueue
 
# Function to get the Kth smallest pair sum
def kthPairSum(arr, K):
    n = len(arr);
 
    # Priority queue to implement max-heap
    pq = PriorityQueue()
 
    # Loop to calculate all possible pair sum
    for i in range(n - 1):
        for j in range(i + 1, n):
 
            # Variable to store the sum
            temp = arr[i] + arr[j];
 
            # If the heap is full
            if (pq.qsize() == K):
 
                # If the top element is greater
                if (pq.queue[-1] > temp):
                    pq.get();
                    pq.put(temp);
            else:
                pq.put(temp);
 
    # Return the Kth smallest value
    return pq.queue[0];
 
# Driver code
arr = [ 1, 5, 6, 3, 2 ];
K = 3;
 
print(kthPairSum(arr, K));
 
# This code is contributed by saurabh_jaiswal.


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG
{
    // Function to get the Kth smallest pair sum
    static int kthPairSum(int[] arr, int K)
    {
        int n = arr.Length;
 
        // Priority queue to implement max-heap
        // Creating empty priority queue
        List<int> pq = new List<int>();
 
        // Loop to calculate all possible pair sum
        for (int i = 0; i < n - 1; i++) {
            for (int j = i + 1; j < n; j++) {
 
                // Variable to store the sum
                int temp = arr[i] + arr[j];
 
                // If the heap is full
                if (pq.Count  == K) {
 
                    // If the top element is greater
                    if (pq[0] > temp) {
                        pq.Remove(0);
                        pq.Add(temp);
                    }
                }
                else
                    pq.Add(temp);
                 
            }
        }
 
        // Return the Kth smallest value
        return pq[0]-1;
    }
 
// Driver Code
public static void Main()
{
    int[] arr = { 1, 5, 6, 3, 2 };
    int K = 3;
 
    Console.Write(kthPairSum(arr, K));
}
}
 
// This code is contributed by avijitmondal1998.


Javascript




<script>
// Javascript code for the above approach
 
// Function to get the Kth smallest pair sum
function kthPairSum(arr, K)
{
    let n = arr.length;
 
    // Priority queue to implement max-heap
    pq = [];
 
    // Loop to calculate all possible pair sum
    for (let i = 0; i < n - 1; i++) {
        for (let j = i + 1; j < n; j++) {
 
            // Variable to store the sum
            let temp = arr[i] + arr[j];
 
            // If the heap is full
            if (pq.length == K) {
 
                // If the top element is greater
                if (pq[0] > temp) {
                    pq.shift();
                    pq.push(temp);
                    pq.sort((a, b) => b - a);
                }
            }
            else
                {pq.push(temp);
                pq.sort((a, b) => b - a);}
                 
        }
    }
 
    // Return the Kth smallest value
    return pq[0];
}
 
// Driver code
 
    let arr = [ 1, 5, 6, 3, 2 ];
    let K = 3;
 
    document.write(kthPairSum(arr, K));
 
// This code is contributed by Pushpesh raj
</script>


Output

5

Time Complexity: O(N2 * logK)
Auxiliary Space: O(K)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments