Friday, December 27, 2024
Google search engine
HomeData Modelling & AIK-th digit from the end of a number

K-th digit from the end of a number

Given an integer N, the task is to find the Kth digit from the end of an integer N. If the Kth digit is not present, then print -1.

Examples:

Input: N = 2354, K = 2
Output: 5

Input: N = 1234, K = 1
Output: 4

Naive Approach: This simplest approach to solve this problem is converting the integer N to string. Follow the steps below to solve this problem:

  • If K is less than equal to 0, then print -1 and return.
  • Convert N into string and store in temp.
  • If K is greater than size of temp, then print -1, otherwise print K character from last.

Below is the implementation of the above approach:

C++




// c++ program for the above approach
#include <bits/stdc++.h>
 
using namespace std;
 
// Function to find the kth digit
// from last in an integer n
void kthDigitFromLast(int n, int k)
{
 
    // If k is less than equal to 0
    if (k <= 0) {
        cout << -1 << endl;
        return;
    }
 
    // Convert integer into string
    string temp = to_string(n);
 
    // If k is greater than length of the
    // string temp
    if (k > temp.length()) {
        cout << -1 << endl;
    }
    // Print the k digit from last
    else {
        cout << temp[temp.length() - k] - '0';
    }
}
 
// Driver code
int main()
{
    // Given Input
    int n = 2354;
    int k = 2;
 
    // Function call
    kthDigitFromLast(n, k);
}


Java




// Java program for the above approach
import java.io.*;
 
class GFG{
     
// Function to find the kth digit
// from last in an integer n   
public static void kthDigitFromLast(int n, int k)
{
     
    // If k is less than equal to 0
    if (k <= 0)
    {
        System.out.println(-1);
        return;
    }
 
    // Convert integer into string
    String temp = Integer.toString(n);
 
    // If k is greater than length of the
    // string temp
    if (k > temp.length())
    {
        System.out.println(-1);
    }
     
    // Print the k digit from last
    else
    {
        int index = temp.length() - k;
        int res = temp.charAt(index) - '0';
        System.out.println(res);
    }
}
 
// Driver code
public static void main(String[] args)
{
     
    // Given Input
    int n = 2354;
    int k = 2;
 
    // Function call
    kthDigitFromLast(n, k);
}
}
 
// This code is contributed by Potta Lokesh


Python3




# Python3 program for the above approach
 
# Function to find the kth digit
# from last in an integer n
def kthDigitFromLast(n, k):
 
    # If k is less than equal to 0
    if (k <= 0):
        print(-1)
        return
 
    # Convert integer into string
    temp = str(n)
 
    # If k is greater than length of the
    # temp
    if (k > len(temp)):
        print(-1)
         
    # Print the k digit from last
    else:
        print(ord(temp[len(temp) - k]) - ord('0'))
 
# Driver code
if __name__ == '__main__':
     
    # Given Input
    n = 2354
    k = 2
 
    # Function call
    kthDigitFromLast(n, k)
 
# This code is contributed by mohit kumar 29


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
     
// Function to find the kth digit
// from last in an integer n
static void kthDigitFromLast(int n, int k)
{
     
    // If k is less than equal to 0
    if (k <= 0)
    {
        Console.Write(-1);
        return;
    }
 
    // Convert integer into string
    string temp = n.ToString();
 
    // If k is greater than length of the
    // string temp
    if (k > temp.Length)
    {
        Console.WriteLine(-1);
    }
     
    // Print the k digit from last
    else
    {
        Console.Write(temp[temp.Length - k] - 48);
    }
}
 
// Driver code
public static void Main()
{
     
    // Given Input
    int n = 2354;
    int k = 2;
 
    // Function call
    kthDigitFromLast(n, k);
}
}
 
// This code is contributed by SURENDRA_GANGWAR


Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to find the kth digit
// from last in an integer n
function kthDigitFromLast(n, k)
{
     
    // If k is less than equal to 0
    if (k <= 0)
    {
        document.write(-1);
        return;
    }
 
    // Convert integer into string
    var temp = String(n);
     
    // If k is greater than length of the
    // string temp
    if (k > temp.length)
    {
        document.write(-1);
    }
     
    // Print the k digit from last
    else
    {
        var req = temp.charAt(temp.length - k)
         
        // Convert to number again
        document.write(Number(req));
    }
}
 
// Driver code
 
// Given Input
var n = 2354;
var k = 2;
 
// Function call
kthDigitFromLast(n, k);
 
// This code is contributed by Potta Lokesh
 
</script>


Output

5

Time complexity: O(d), where d is the number of digits in number N.
Auxiliary Space: O(d)

Efficient Approach: This problem can be solved by iterating over the digits of the number N. Follow the steps below to solve this problem: 

  • If K is less than equal to 0, then print -1 and return.
  • Iterate while N and K-1 are greater than 0 :
    • Update N as N/10 and decrement K by 1.
  • If N is 0, then print -1, otherwise print N%10.

Below is the implementation of the above approach: 

C++




// c++ program for the above approach
#include <bits/stdc++.h>
 
using namespace std;
 
// Function to find the kth digit
// from last in an integer n
void kthDigitFromLast(int n, int k)
{
    // If k is less than equal to 0
    if (k <= 0) {
        cout << -1 << endl;
        return;
    }
 
    // Divide the number n by 10
    // upto k-1 times
    while ((k - 1) > 0 && n > 0) {
        n = n / 10;
        k--;
    }
 
    // If the number n is equal 0
    if (n == 0) {
        cout << -1 << endl;
    }
    // Print the right most digit
    else {
        cout << n % 10 << endl;
    }
}
 
// Driver code
int main()
{
    // Given Input
    int n = 2354;
    int k = 2;
 
    // Function call
    kthDigitFromLast(n, k);
}


Java




// Java program for the above approach
import java.io.*;
 
class GFG{
     
// Function to find the kth digit
// from last in an integer n
public static void kthDigitFromLast(int n, int k)
{
     
    // If k is less than equal to 0
    if (k <= 0)
    {
        System.out.println(-1);
        return;
    }
 
    // Divide the number n by 10
    // upto k-1 times
    while ((k - 1) > 0 && n > 0)
    {
        n = n / 10;
        k--;
    }
 
    // If the number n is equal 0
    if (n == 0)
    {
        System.out.println(-1);
    }
     
    // Print the right most digit
    else
    {
        System.out.println(n % 10);
    }
}
 
// Driver code
public static void main(String[] args)
{
    int n = 2354;
    int k = 2;
 
    // Function call
    kthDigitFromLast(n, k);
}
}
 
// This code is contributed by Potta Lokesh


Python3




# Python program for the above approach
# Function to find the kth digit
# from last in an eger n
def kthDigitFromLast( n,  k):
 
    # If k is less than equal to 0
    if (k <= 0):
        print("-1")
        return
     
    # Divide the number n by 10
    # upto k-1 times
    while ((k - 1) > 0 and n > 0):
        n = n / 10
        k -= 1
     
    # If the number n is equal 0
    if (n == 0):
        print("-1")
     
    # Pr the right most digit
    else:
        print(int(n % 10 ))
     
# Driver code
if __name__ == '__main__':
     
    # Given Input
    n = 2354
    k = 2
 
    # Function call
    kthDigitFromLast(n, k)
     
# this code is contributed by shivanisinghss2110


C#




// C# program for the above approach
using System;
class GFG
{
     
// Function to find the kth digit
// from last in an integer n
public static void kthDigitFromLast(int n, int k)
{
     
    // If k is less than equal to 0
    if (k <= 0)
    {
        Console.Write(-1);
        return;
    }
 
    // Divide the number n by 10
    // upto k-1 times
    while ((k - 1) > 0 && n > 0)
    {
        n = n / 10;
        k--;
    }
 
    // If the number n is equal 0
    if (n == 0)
    {
        Console.Write(-1);
    }
     
    // Print the right most digit
    else
    {
        Console.Write(n % 10);
    }
}
 
// Driver code
public static void Main(String[] args)
{
    int n = 2354;
    int k = 2;
 
    // Function call
    kthDigitFromLast(n, k);
}
}
 
// This code is contributed by shivanisinghss2110


Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to find the kth digit
// from last in an integer n
function kthDigitFromLast(n, k)
{
     
    // If k is less than equal to 0
    if (k <= 0)
    {
        document.write(-1);
        return;
    }
     
    // Divide the number n by 10
    // upto k-1 times
    while ((k - 1) > 0 && n > 0)
    {
        n = n / 10;
        k--;
    }
     
    // If the number n is equal 0
    if (n == 0)
    {
        document.write(-1);
    }
     
    // Print the right most digit
    else
    {
        document.write(parseInt(n % 10));
    }
}
 
// Driver code
 
// Given Input
var n = 2354;
var k = 2;
 
// Function call
kthDigitFromLast(n, k);
 
// This code is contributed by Potta Lokesh
 
</script>


Output

5

Time complexity: O(d), where d is the number of digits in number N.
Auxiliary Space: O(1)

Efficient Approach: This problem can be solved using power function. Follow the steps below to solve this problem:

  • If K is less than equal to 0, then print -1 and return.
  • Initialize a variable say, divisor as pow(10, K-1).
  • If divisor is greater than N, then print -1, otherwise print (N/divisor) %10.

Below is the implementation of the above approach: 

C++




// c++ program for the above approach
#include <bits/stdc++.h>
 
using namespace std;
 
// Function to find the kth digit
// from last in an integer n
void kthDigitFromLast(int n, int k)
{
    // If k is less than equal to 0
    if (k <= 0) {
        cout << -1 << endl;
        return;
    }
 
    // Calculate kth digit using power function
    int divisor = (int)pow(10, k - 1);
 
    // If divisor is greater than n
    if (divisor > n) {
        cout << -1 << endl;
    }
    // Otherwise print kth digit from last
    else {
        cout << (n / divisor) % 10 << endl;
    }
}
 
// Driver code
int main()
{
    // Given Input
    int n = 2354;
    int k = 2;
 
    // Function call
    kthDigitFromLast(n, k);
}


Java




// Java program for the above approach
import java.io.*;
 
class GFG{
     
// Function to find the kth digit
// from last in an integer n
public static void kthDigitFromLast(int n, int k)
{
     
    // If k is less than equal to 0
    if (k <= 0)
    {
        System.out.println(-1);
        return;
    }
 
    // Calculate kth digit using power function
    int diviser = (int)Math.pow(10, k - 1);
 
    // If diviser is greater than n
    if (diviser > n)
    {
        System.out.println(-1);
    }
     
    // Otherwise print kth digit from last
    else
    {
        System.out.println((n / diviser) % 10);
    }
}
 
// Driver code
public static void main(String[] args)
{
    int n = 2354;
    int k = 2;
 
    // Function call
    kthDigitFromLast(n, k);
}
}
 
// This code is contributed by Potta Lokesh


Python3




# Python program for the above approach
 
# Function to find the kth digit
# from last in an integer n
def kthDigitFromLast(n, k):
     
    # If k is less than equal to 0
    if (k <= 0):
        print("-1")
        return
     
    # Calculate kth digit using power function
    divisor = int(pow(10, k - 1))
 
    # If divisor is greater than n
    if (divisor > n):
        print("-1")
     
    # Otherwise print kth digit from last
    else:
        print(int((n / divisor) % 10))
     
# Given Input
n = 2354;
k = 2;
 
# Function call
kthDigitFromLast(n, k);
 
# This code is contributed by SoumikMondal


C#




// C# program for the above approach
using System;
 
class GFG{
     
// Function to find the kth digit
// from last in an integer n
public static void kthDigitFromLast(int n, int k)
{
     
    // If k is less than equal to 0
    if (k <= 0)
    {
        Console.Write(-1);
        return;
    }
 
    // Calculate kth digit using power function
    int diviser = (int)Math.Pow(10, k - 1);
 
    // If diviser is greater than n
    if (diviser > n)
    {
        Console.Write(-1);
    }
     
    // Otherwise print kth digit from last
    else
    {
        Console.Write((n / diviser) % 10);
    }
}
 
// Driver code
public static void Main(String[] args)
{
    int n = 2354;
    int k = 2;
 
    // Function call
    kthDigitFromLast(n, k);
}
}
 
// This code is contributed by shivanisinghss2110


Javascript




<script>
 
// JavaScript program for the above approach
function kthDigitFromLast(n, k)
{
     
    // If k is less than equal to 0
    if (k <= 0)
    {
        document.write(-1);
        return;
    }
 
    // Calculate kth digit using power function
    var diviser = parseInt(Math.pow(10, k - 1));
 
    // If diviser is greater than n
    if (diviser > n)
    {
        document.write(-1);
    }
     
    // Otherwise print kth digit from last
    else
    {
        document.write(parseInt((n / diviser) % 10));
    }
}
 
// Driver code
 
// Given Input
var n = 2354;
var k = 2;
 
// Function call
kthDigitFromLast(n, k);
 
// This code is contributed by Potta Lokesh
 
</script>


Output

5

Time complexity: O(log(K)), where d is the number of digits in number N. This time complexity is due to the calculation of power of 10 using power function.
Auxiliary Space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments