Wednesday, January 1, 2025
Google search engine
HomeData Modelling & AIK distant prime pairs in a given range

K distant prime pairs in a given range

Given two integers L, R, and an integer K, the task is to print all the pairs of Prime Numbers from the given range whose difference is K.

Examples:

Input: L = 1, R = 19, K = 6
Output: (5, 11) (7, 13) (11, 17) (13, 19)
Explanation: The pairs of prime numbers with difference 6 are (5, 11), (7, 13), (11, 17), and (13, 19).

Input: L = 4, R = 13, K = 2
Output: (5, 7) (11, 13)
Explanation: The pairs of prime numbers with difference 2 are (5, 7) and (11, 13).

Naive Approach: The simplest approach is to generate all possible pairs having difference K from the given range and check if both the pair elements are Prime Numbers or not. If there exists such a pair, then print that pair. 

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if given number is prime numbers
bool isPrime(int N)
{
    for (int i = 2; i <= sqrt(N); i++) {
        if (N % i == 0)
            return false;
    }
    return true;
}
 
// Function to print all the prime pairs
// in the given range that differs by K
void getPrimePairs(int L, int R, int K)
{
    int count = 0;
 
    // Iterate over the given range
    for (int i = L; i <= R; i++) {
 
        // Check if pair (i, i + k) both are prime or not
        if (isPrime(i) && isPrime(i + K)) {
            count++;
        }
    }
 
      // Print the total count
    cout << count << endl;
}
 
// Driver Code
int main()
{
    // Given range
    int L = 4, R = 13;
 
    // Given K
    int K = 2;
 
    // Function Call
    getPrimePairs(L, R, K);
 
    return 0;
}


Java




import java.util.*;
 
class Main
{
   
  // Function to check if given number is prime numbers
  public static boolean isPrime(int N)
  {
    for (int i = 2; i <= Math.sqrt(N); i++) {
      if (N % i == 0)
        return false;
    }
    return true;
  }
 
  // Function to print all the prime pairs
  // in the given range that differs by K
  public static void getPrimePairs(int L, int R, int K)
  {
    int count = 0;
 
    // Iterate over the given range
    for (int i = L; i <= R; i++) {
 
      // Check if pair (i, i + k) both are prime or
      // not
      if (isPrime(i) && isPrime(i + K)) {
        count++;
      }
    }
 
    // Print the total count
    System.out.println(count);
  }
 
  // Driver Code
  public static void main(String[] args)
  {
    // Given range
    int L = 4, R = 13;
 
    // Given K
    int K = 2;
 
    // Function Call
    getPrimePairs(L, R, K);
  }
}
 
// This code is contributed by divyansh2212


Python3




# Python program for the above approach
import math
 
# Function to check if given number is prime numbers
def isPrime(N):
    for i in range(2, math.floor(math.sqrt(N))+1):
        if (N % i == 0):
            return False;
    return True;
 
# Function to print all the prime pairs
# in the given range that differs by K
def getPrimePairs(L, R, K):
    count = 0;
 
    # Iterate over the given range
    for i in range(L, R+1):
        # Check if pair (i, i + k) both are prime or not
        if (isPrime(i) and isPrime(i + K)):
            count+=1;
         
      # Print the total count
    print(count);
 
# Driver Code
# Given range
L = 4;
R = 13;
 
# Given K
K = 2;
 
# Function Call
getPrimePairs(L, R, K);
 
# This code is contributed by ritaagarwal.


C#




// C# code for the above approach
using System;
 
class GFG
{
 
  // Function to check if given number is prime numbers
  public static bool IsPrime(int N)
  {
    for (int i = 2; i <= Math.Sqrt(N); i++) {
      if (N % i == 0)
        return false;
    }
    return true;
  }
 
  // Function to print all the prime pairs
  // in the given range that differs by K
  public static void GetPrimePairs(int L, int R, int K)
  {
    int count = 0;
 
    // Iterate over the given range
    for (int i = L; i <= R; i++) {
 
      // Check if pair (i, i + k) both are prime or
      // not
      if (IsPrime(i) && IsPrime(i + K)) {
        count++;
      }
    }
 
    // Print the total count
    Console.WriteLine(count);
  }
 
  // Driver Code
  public static void Main(string[] args)
  {
    // Given range
    int L = 4, R = 13;
 
    // Given K
    int K = 2;
 
    // Function Call
    GetPrimePairs(L, R, K);
  }
}
 
// This code is contributed by lokeshpotta20.


Javascript




// Javascript program for the above approach
 
// Function to check if given number is prime numbers
function isPrime(N)
{
    for (let i = 2; i <= Math.sqrt(N); i++) {
        if (N % i == 0)
            return false;
    }
    return true;
}
 
// Function to print all the prime pairs
// in the given range that differs by K
function getPrimePairs(L, R, K)
{
    let count = 0;
 
    // Iterate over the given range
    for (let i = L; i <= R; i++) {
 
        // Check if pair (i, i + k) both are prime or not
        if (isPrime(i) && isPrime(i + K)) {
            count++;
        }
    }
 
      // Print the total count
    console.log(count);
}
 
// Driver Code
// Given range
let L = 4, R = 13;
 
// Given K
let K = 2;
 
// Function Call
getPrimePairs(L, R, K);
 
// This code is contributed by poojaagarwal2.


Output

2

Time Complexity: O(sqrt((N))*(R – L + 1)), where N is any number in the range [L, R].
Auxiliary Space: O(1)

Efficient Approach: To optimize the above approach, the idea is to use the Sieve of Eratosthenes to find all the prime numbers in the given range [L, R] and store it in an unordered_map M. Now, traverse through each value(say val) in the M and if (val + K) is also present in the map M, then print the pair.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to generate prime numbers
// in the given range [L, R]
void findPrimeNos(int L, int R,
                  unordered_map<int,
                                int>& M)
{
    // Store all value in the range
    for (int i = L; i <= R; i++) {
        M[i]++;
    }
 
    // Erase 1 as its non-prime
    if (M.find(1) != M.end()) {
        M.erase(1);
    }
 
    // Perform Sieve of Eratosthenes
    for (int i = 2; i <= sqrt(R); i++) {
 
        int multiple = 2;
 
        while ((i * multiple) <= R) {
 
            // Find current multiple
            if (M.find(i * multiple)
                != M.end()) {
 
                // Erase as it is a
                // non-prime
                M.erase(i * multiple);
            }
 
            // Increment multiple
            multiple++;
        }
    }
}
 
// Function to print all the prime pairs
// in the given range that differs by K
void getPrimePairs(int L, int R, int K)
{
    unordered_map<int, int> M;
 
    // Generate all prime number
    findPrimeNos(L, R, M);
 
    // Traverse the Map M
    for (auto& it : M) {
 
        // If it.first & (it.first + K)
        // is prime then print this pair
        if (M.find(it.first + K)
            != M.end()) {
            cout << "(" << it.first
                 << ", "
                 << it.first + K
                 << ") ";
        }
    }
}
 
// Driver Code
int main()
{
    // Given range
    int L = 1, R = 19;
 
    // Given K
    int K = 6;
 
    // Function Call
    getPrimePairs(L, R, K);
 
    return 0;
}


Java




// Java program for the
// above approach
import java.util.*;
 
class solution{
 
// Function to generate prime
// numbers in the given range [L, R]
static void findPrimeNos(int L, int R,
                         Map<Integer,
                             Integer> M,
                         int K)
{
  // Store all value in the range
  for (int i = L; i <= R; i++)
  {
    if(M.get(i) != null)
      M.put(i, M.get(i) + 1);
    else
      M.put(i, 1);
  }
 
  // Erase 1 as its
  // non-prime
  if (M.get(1) != null)
  {
    M.remove(1);
  }
 
  // Perform Sieve of
  // Eratosthenes
  for (int i = 2;
           i <= Math.sqrt(R); i++)
  {
    int multiple = 2;
     
    while ((i * multiple) <= R)
    {
      // Find current multiple
      if (M.get(i * multiple) != null)
      {
        // Erase as it is a
        // non-prime
        M.remove(i * multiple);
      }
 
      // Increment multiple
      multiple++;
    }
  }
 
  // Traverse the Map M
  for (Map.Entry<Integer,
                 Integer> entry :
       M.entrySet()) 
  {
    // If it.first & (it.first + K)
    // is prime then print this pair
 
    if (M.get(entry.getKey() + K) != null)
    {
      System.out.print("(" + entry.getKey() +
                       ", " + (entry.getKey() +
                       K) + ") ");
    }
  }
}
 
// Function to print all
// the prime pairs in the
// given range that differs by K
static void getPrimePairs(int L,
                          int R, int K)
{
  Map<Integer,
      Integer> M = new HashMap<Integer,
                               Integer>(); 
 
  // Generate all prime number
  findPrimeNos(L, R, M, K);
}
 
// Driver Code
public static void main(String args[])
{
  // Given range
  int L = 1, R = 19;
 
  // Given K
  int K = 6;
 
  // Function Call
  getPrimePairs(L, R, K);
}
}
 
// This code is contributed by SURENDRA_GANGWAR


Python3




# Python3 program for the above approach
from math import sqrt
 
# Function to generate prime numbers
# in the given range [L, R]
def findPrimeNos(L, R, M):
     
    # Store all value in the range
    for i in range(L, R + 1):
        M[i] = M.get(i, 0) + 1
 
    # Erase 1 as its non-prime
    if (1 in M):
        M.pop(1)
 
    # Perform Sieve of Eratosthenes
    for i in range(2, int(sqrt(R)) + 1, 1):
        multiple = 2
 
        while ((i * multiple) <= R):
             
            # Find current multiple
            if ((i * multiple) in M):
                 
                # Erase as it is a
                # non-prime
                M.pop(i * multiple)
 
            # Increment multiple
            multiple += 1
 
# Function to print all the prime pairs
# in the given range that differs by K
def getPrimePairs(L, R, K):
     
    M = {}
 
    # Generate all prime number
    findPrimeNos(L, R, M)
 
    # Traverse the Map M
    for key, values in M.items():
         
        # If it.first & (it.first + K)
        # is prime then print this pair
        if ((key + K) in M):
            print("(", key, ",",
                  key + K, ")", end = " ")
 
# Driver Code
if __name__ == '__main__':
     
    # Given range
    L = 1
    R = 19
 
    # Given K
    K = 6
 
    # Function Call
    getPrimePairs(L, R, K)
 
# This code is contributed by bgangwar59


C#




// C# program for the
// above approach
using System;
using System.Collections.Generic;
class solution{
 
// Function to generate prime
// numbers in the given range [L, R]
static void findPrimeNos(int L, int R,
                         Dictionary<int,
                         int> M, int K)
{
  // Store all value in the range
  for (int i = L; i <= R; i++)
  {
      if(M.ContainsKey(i))
      M.Add(i, M[i] + 1);
    else
      M.Add(i, 1);
  }
 
  // Erase 1 as its
  // non-prime
  if (M[1] != 0)
  {
    M.Remove(1);
  }
 
  // Perform Sieve of
  // Eratosthenes
  for (int i = 2;
           i <= Math.Sqrt(R); i++)
  {
    int multiple = 2;
     
    while ((i * multiple) <= R)
    {
      // Find current multiple
      if (M.ContainsKey(i * multiple))
      {
        // Erase as it is a
        // non-prime
        M.Remove(i * multiple);
      }
 
      // Increment multiple
      multiple++;
    }
  }
 
  // Traverse the Map M
  foreach (KeyValuePair<int
                        int> entry in  M) 
  {
    // If it.first & (it.first + K)
    // is prime then print this pair
 
    if (M.ContainsKey(entry.Key + K))
    {
      Console.Write("(" + entry.Key +
                    ", " + (entry.Key +
                    K) + ") ");
    }
  }
}
 
// Function to print all
// the prime pairs in the
// given range that differs by K
static void getPrimePairs(int L,
                          int R, int K)
{
  Dictionary<int,
             int> M = new Dictionary<int,
                                     int>(); 
   
  // Generate all prime number
  findPrimeNos(L, R, M, K);
}
 
// Driver Code
public static void Main(String []args)
{
  // Given range
  int L = 1, R = 19;
 
  // Given K
  int K = 6;
 
  // Function Call
  getPrimePairs(L, R, K);
}
}
 
// This code is contributed by Amit Katiyar


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to generate prime numbers
// in the given range [L, R]
function findPrimeNos(L, R, M)
{
     
    // Store all value in the range
    for(var i = L; i <= R; i++)
    {
        if (M.has(i))
            M.set(i, M.get(i) + 1)
        else
            M.set(i, 1)
    }
 
    // Erase 1 as its non-prime
    if (M.has(1))
    {
        M.delete(1);
    }
 
    // Perform Sieve of Eratosthenes
    for(var i = 2; i <= parseInt(Math.sqrt(R)); i++)
    {
        var multiple = 2;
 
        while ((i * multiple) <= R)
        {
             
            // Find current multiple
            if (M.has(i * multiple))
            {
                 
                // Erase as it is a
                // non-prime
                M.delete(i * multiple);
            }
 
            // Increment multiple
            multiple++;
        }
    }
    return M;
}
 
// Function to print all the prime pairs
// in the given range that differs by K
function getPrimePairs(L, R,  K)
{
    var M = new Map();
 
    // Generate all prime number
    M = findPrimeNos(L, R, M);
 
    // Traverse the Map M
    M.forEach((value, key) => {
         
        // If it.first & (it.first + K)
        // is prime then print this pair
        if (M.has(key + K))
        {
            document.write("(" + key + ", " +
                          (key + K) + ") ");
        }
    });
}
 
// Driver Code
 
// Given range
var L = 1, R = 19;
 
// Given K
var K = 6;
 
// Function Call
getPrimePairs(L, R, K);
 
// This code is contributed by rutvik_56
 
</script>


Output

(13, 19) (11, 17) (5, 11) (7, 13) 

Time Complexity: O(N*log*(log(N)) + sqrt(R – L)), where N = R – L + 1
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments