Given two integers n and k. Consider first permutation of natural n numbers, P = “1 2 3 … n”, print a permutation “Result” such that abs(Resulti – Pi) = k where Pi denotes the position of i in permutation P. The value of Pi varies from 1 to n. If there are multiple possible results, then print the lexicographically smallest one.
Input: n = 6 k = 3 Output: 4 5 6 1 2 3 Explanation: P = 1 2 3 4 5 6 Result = 4 5 6 1 2 3 We can notice that the difference between individual numbers (at same positions) of P and result is 3 and "4 5 6 1 2 3" is lexicographically smallest such permutation. Other greater permutations could be Input : n = 6 k = 2 Output : Not possible Explanation: No permutation is possible with difference is k
Naive approach is to generate all the permutation from 1 to n and pick the smallest one which satisfy the condition of absolute difference k. Time complexity of this approach is ?(n!) which will definitely time out for large value of n.
The Efficient approach is to observe the pattern at each position of index. For each position of index i, there can only exist two candidate i.e., i + k and i – k. As we need to find lexicographically smallest permutation so we will first look for i – k candidate(if possible) and then for i + k candidate.
Illustration: n = 8, k = 2 P : 1 2 3 4 5 6 7 8 For any ith position we will check which candidate is possible i.e., i + k or i - k 1st pos = 1 + 2 = 3 (1 - 2 not possible) 2nd pos = 2 + 2 = 4 (2 - 2 not possible) 3rd pos = 3 - 2 = 1 (possible) 4th pos = 4 - 2 = 2 (possible) 5th pos = 5 + 2 = 7 (5 - 2 already placed, not possible) 6th pos = 6 + 2 = 8 (6 - 2 already placed, not possible) 7th pos = 7 - 2 = 5 (possible) 8th pos = 8 - 2 = 6 (possible)
Note: If we observe above illustration then we will find that i + k and i – k are alternating after kth consecutive interval. Another observation is that the whole permutation is only when n is even such that n can be divided into two parts where each part must be divisible by k.
C++
// C++ program to find k absolute difference // permutation #include<bits/stdc++.h> using namespace std; void kDifferencePermutation( int n, int k) { // If k is 0 then we just print the // permutation from 1 to n if (!k) { for ( int i = 0; i < n; ++i) cout << i + 1 << " " ; } // Check whether permutation is feasible or not else if (n % (2 * k) != 0) cout << "Not Possible" ; else { for ( int i = 0; i < n; ++i) { // Put i + k + 1 candidate if position is // feasible, otherwise put the i - k - 1 // candidate if ((i / k) % 2 == 0) cout << i + k + 1 << " " ; else cout << i - k + 1 << " " ; } } cout << "\n" ; } // Driver code int main() { int n = 6 , k = 3; kDifferencePermutation(n, k); n = 6 , k = 2; kDifferencePermutation(n, k); n = 8 , k = 2; kDifferencePermutation(n, k); return 0; } |
Java
// Java program to find k absolute // difference permutation import java.io.*; class GFG { static void kDifferencePermutation( int n, int k) { // If k is 0 then we just print the // permutation from 1 to n if (!(k > 0 )) { for ( int i = 0 ; i < n; ++i) System.out.print( i + 1 + " " ); } // Check whether permutation is // feasible or not else if (n % ( 2 * k) != 0 ) System.out.print( "Not Possible" ); else { for ( int i = 0 ; i < n; ++i) { // Put i + k + 1 candidate // if position is feasible, // otherwise put the // i - k - 1 candidate if ((i / k) % 2 == 0 ) System.out.print( i + k + 1 + " " ); else System.out.print( i - k + 1 + " " ); } } System.out.println() ; } // Driver code static public void main (String[] args) { int n = 6 , k = 3 ; kDifferencePermutation(n, k); n = 6 ; k = 2 ; kDifferencePermutation(n, k); n = 8 ; k = 2 ; kDifferencePermutation(n, k); } } // This code is contributed by anuj_67. |
Python3
# Python 3 program to find k # absolute difference permutation def kDifferencePermutation(n, k): # If k is 0 then we just print the # permutation from 1 to n if (k = = 0 ): for i in range (n): print (i + 1 , end = " " ) # Check whether permutation # is feasible or not elif (n % ( 2 * k) ! = 0 ): print ( "Not Possible" , end = "") else : for i in range (n): # Put i + k + 1 candidate if position is # feasible, otherwise put the i - k - 1 # candidate if ( int (i / k) % 2 = = 0 ): print (i + k + 1 , end = " " ) else : print (i - k + 1 , end = " " ) print ( "\n" , end = "") # Driver code if __name__ = = '__main__' : n = 6 k = 3 kDifferencePermutation(n, k) n = 6 k = 2 kDifferencePermutation(n, k) n = 8 k = 2 kDifferencePermutation(n, k) # This code is contributed by # Surendra_Gangwar |
C#
// C# program to find k absolute // difference permutation using System; class GFG { static void kDifferencePermutation( int n, int k) { // If k is 0 then we just print the // permutation from 1 to n if (!(k > 0)) { for ( int i = 0; i < n; ++i) Console.Write( i + 1 + " " ); } // Check whether permutation is // feasible or not else if (n % (2 * k) != 0) Console.Write( "Not Possible" ); else { for ( int i = 0; i < n; ++i) { // Put i + k + 1 candidate // if position is feasible, // otherwise put the // i - k - 1 candidate if ((i / k) % 2 == 0) Console.Write( i + k + 1 + " " ); else Console.Write( i - k + 1 + " " ); } } Console.WriteLine() ; } // Driver code static public void Main () { int n = 6 , k = 3; kDifferencePermutation(n, k); n = 6 ; k = 2; kDifferencePermutation(n, k); n = 8 ; k = 2; kDifferencePermutation(n, k); } } // This code is contributed by anuj_67. |
PHP
<?php // PHP program to find k absolute // difference permutation function kDifferencePermutation( $n , $k ) { // If k is 0 then we just print the // permutation from 1 to n if (! $k ) { for ( $i = 0; $i < $n ; ++ $i ) echo $i + 1 , " " ; } // Check whether permutation // is feasible or not else if ( $n % (2 * $k ) != 0) echo "Not Possible" ; else { for ( $i = 0; $i < $n ; ++ $i ) { // Put i + k + 1 candidate // if position is feasible, // otherwise put the i - k - 1 // candidate if (( $i / $k ) % 2 == 0) echo $i + $k + 1 , " " ; else echo $i - $k + 1 , " " ; } } echo "\n" ; } // Driver Code $n = 6 ; $k = 3; kDifferencePermutation( $n , $k ); $n = 6 ; $k = 2; kDifferencePermutation( $n , $k ); $n = 8 ; $k = 2; kDifferencePermutation( $n , $k ); // This code is contributed by anuj_67. ?> |
Javascript
<script> // Javascript program to find k absolute difference permutation function kDifferencePermutation(n, k) { // If k is 0 then we just print the // permutation from 1 to n if (!(k > 0)) { for (let i = 0; i < n; ++i) document.write( i + 1 + " " ); } // Check whether permutation is // feasible or not else if (n % (2 * k) != 0) document.write( "Not Possible" ); else { for (let i = 0; i < n; ++i) { // Put i + k + 1 candidate // if position is feasible, // otherwise put the // i - k - 1 candidate if (parseInt(i / k, 10) % 2 == 0) document.write( i + k + 1 + " " ); else document.write( i - k + 1 + " " ); } } document.write( "</br>" ) ; } let n = 6 , k = 3; kDifferencePermutation(n, k); n = 6 ; k = 2; kDifferencePermutation(n, k); n = 8 ; k = 2; kDifferencePermutation(n, k); // This code is contributed by rameshtravel07. </script> |
Output:
4 5 6 1 2 3 Not Possible 3 4 1 2 7 8 5 6
Time complexity: O(n)
Auxiliary space: O(1)
This article is contributed by Shubham Bansal. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!