Tuesday, January 7, 2025
Google search engine
HomeLanguagesJavascriptJavascript Program to Find the Longest Bitonic Subsequence | DP-15

Javascript Program to Find the Longest Bitonic Subsequence | DP-15

Given an array arr[0 … n-1] containing n positive integers, a subsequence of arr[] is called Bitonic if it is first increasing, then decreasing. Write a function that takes an array as argument and returns the length of the longest bitonic subsequence. 
A sequence, sorted in increasing order is considered Bitonic with the decreasing part as empty. Similarly, decreasing order sequence is considered Bitonic with the increasing part as empty. 
Examples:

Input arr[] = {1, 11, 2, 10, 4, 5, 2, 1};
Output: 6 (A Longest Bitonic Subsequence of length 6 is 1, 2, 10, 4, 2, 1)

Input arr[] = {12, 11, 40, 5, 3, 1}
Output: 5 (A Longest Bitonic Subsequence of length 5 is 12, 11, 5, 3, 1)

Input arr[] = {80, 60, 30, 40, 20, 10}
Output: 5 (A Longest Bitonic Subsequence of length 5 is 80, 60, 30, 20, 10)

Source: Microsoft Interview Question
 

Solution 
This problem is a variation of standard Longest Increasing Subsequence (LIS) problem. Let the input array be arr[] of length n. We need to construct two arrays lis[] and lds[] using Dynamic Programming solution of LIS problem. lis[i] stores the length of the Longest Increasing subsequence ending with arr[i]. lds[i] stores the length of the longest Decreasing subsequence starting from arr[i]. Finally, we need to return the max value of lis[i] + lds[i] – 1 where i is from 0 to n-1.
Following is the implementation of the above Dynamic Programming solution. 
 

Javascript




<script>
  
/* Dynamic Programming implementation in JavaScript for longest bitonic 
   subsequence problem */    
      
    /* lbs() returns the length of the Longest Bitonic Subsequence in 
    arr[] of size n. The function mainly creates two temporary arrays 
    lis[] and lds[] and returns the maximum lis[i] + lds[i] - 1. 
    
    lis[i] ==> Longest Increasing subsequence ending with arr[i] 
    lds[i] ==> Longest decreasing subsequence starting with arr[i] 
    */
    function lbs(arr,n)
    {
        let i, j; 
        /* Allocate memory for LIS[] and initialize LIS values as 1 for 
            all indexes */
        let lis = new Array(n)
        for (i = 0; i < n; i++) 
            lis[i] = 1;
          
        /* Compute LIS values from left to right */
        for (i = 1; i < n; i++) 
            for (j = 0; j < i; j++) 
                if (arr[i] > arr[j] && lis[i] < lis[j] + 1) 
                    lis[i] = lis[j] + 1; 
    
        /* Allocate memory for lds and initialize LDS values for 
            all indexes */
        let lds = new Array(n); 
        for (i = 0; i < n; i++) 
            lds[i] = 1; 
    
        /* Compute LDS values from right to left */
        for (i = n-2; i >= 0; i--) 
            for (j = n-1; j > i; j--) 
                if (arr[i] > arr[j] && lds[i] < lds[j] + 1) 
                    lds[i] = lds[j] + 1; 
    
    
        /* Return the maximum value of lis[i] + lds[i] - 1*/
        let max = lis[0] + lds[0] - 1; 
        for (i = 1; i < n; i++) 
            if (lis[i] + lds[i] - 1 > max) 
                max = lis[i] + lds[i] - 1; 
    
        return max; 
    }
    let arr=[0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]
    let n = arr.length;
    document.write("Length of LBS is "+ lbs( arr, n )); 
          
    // This code is contributed by avanitrachhadiya2155
      
</script>


Output: 

 Length of LBS is 7

Time Complexity: O(n^2) 
Auxiliary Space: O(n)
 

Please refer complete article on Longest Bitonic Subsequence | DP-15 for more details!

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments