Thursday, January 9, 2025
Google search engine
HomeLanguagesJavascriptJavascript Program to check Involutory Matrix

Javascript Program to check Involutory Matrix

Given a matrix and the task is to check matrix is involutory matrix or not. 
Involutory Matrix: A matrix is said to be involutory matrix if matrix multiply by itself return the identity matrix. Involutory matrix is the matrix that is its own inverse. The matrix A is said to be involutory matrix if A * A = I. Where I is the identity matrix. 
 

Involutory-Matrix

Examples: 

Input : mat[N][N] = {{1, 0, 0},
                     {0, -1, 0},
                     {0, 0, -1}}
Output : Involutory Matrix

Input : mat[N][N] = {{1, 0, 0},
                     {0, 1, 0},
                     {0, 0, 1}} 
Output : Involutory Matrix

Javascript




<script>
 
// Javascript to implement involutory matrix.
var N = 3;
 
// Function for matrix multiplication.
function multiply(mat, res)
{
    for(var i = 0; i < N; i++)
    {
        for(var j = 0; j < N; j++)
        {
            res[i][j] = 0;
            for(var k = 0; k < N; k++)
                res[i][j] += mat[i][k] * mat[k][j];
        }
    }
}
 
// Function to check involutory matrix.
function InvolutoryMatrix(mat)
{
    var res = Array(N).fill(0).map(
        x => Array(N).fill(0));
 
    // Multiply function call.
    multiply(mat, res);
 
    for(var i = 0; i < N; i++)
    {
        for(var j = 0; j < N; j++)
        {
            if (i == j && res[i][j] != 1)
                return false;
            if (i != j && res[i][j] != 0)
                return false;
        }
    }
    return true;
}
     
// Driver code
var mat = [ [ 1, 0, 0 ],
            [ 0, -1, 0 ],
            [ 0, 0, -1 ] ];
 
// Function call. If function return
// true then if part will execute
// otherwise else part will execute.
if (InvolutoryMatrix(mat))
    document.write("Involutory Matrix");
else
    document.write("Not Involutory Matrix");
 
// This code is contributed by 29AjayKumar
 
</script>


Output : 

Involutory Matrix

Time complexity: O(N3) as three nested loops are executing. Here N is size of rows and columns.
Auxiliary space: O(N2) as res 2d matrix has been created.

Please refer complete article on Program to check Involutory Matrix for more details!

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments