Tuesday, January 7, 2025
Google search engine
HomeLanguagesJavascriptJavascript Program for Kronecker Product of two matrices

Javascript Program for Kronecker Product of two matrices

Given a {m} imes{n}     matrix A and a {p} imes{q}     matrix B, their Kronecker product C = A tensor B, also called their matrix direct product, is an {(mp)} imes{(nq)}     matrix. 

A tensor B =  |a11B   a12B|
              |a21B   a22B|

= |a11b11   a11b12   a12b11  a12b12|
  |a11b21   a11b22   a12b21  a12b22| 
  |a11b31   a11b32   a12b31  a12b32|
  |a21b11   a21b12   a22b11  a22b12|
  |a21b21   a21b22   a22b21  a22b22|
  |a21b31   a21b32   a22b31  a22b32|

Examples:

1. The matrix direct(kronecker) product of the 2×2 matrix A 
   and the 2×2 matrix B is given by the 4×4 matrix :

Input : A = 1 2    B = 0 5
            3 4        6 7

Output : C = 0  5  0  10
             6  7  12 14
             0  15 0  20
             18 21 24 28

2. The matrix direct(kronecker) product of the 2×3 matrix A 
   and the 3×2 matrix B is given by the 6×6 matrix :

Input : A = 1 2    B = 0 5 2
            3 4        6 7 3
            1 0

Output : C = 0      5    2    0     10    4    
             6      7    3   12     14    6    
             0     15    6    0     20    8    
            18     21    9   24     28   12    
             0      5    2    0      0    0    
             6      7    3    0      0    0    

 

Below is the code to find the Kronecker Product of two matrices and stores it as matrix C : 
 

Javascript




<script>
    // Javascript code to find the Kronecker Product of
    // two matrices and stores it as matrix C
     
    // rowa and cola are no of rows and columns
    // of matrix A
    // rowb and colb are no of rows and columns
    // of matrix B
    let cola = 2, rowa = 3, colb = 3, rowb = 2;
       
    // Function to computes the Kronecker Product
    // of two matrices
    function Kroneckerproduct(A, B)
    {
       
        let C= new Array(rowa * rowb)
        for(let i = 0; i < (rowa * rowb); i++)
        {
            C[i] = new Array(cola * colb);
            for(let j = 0; j < (cola * colb); j++)
            {
                C[i][j] = 0;
            }
        }
       
        // i loops till rowa
        for (let i = 0; i < rowa; i++)
        {
       
            // k loops till rowb
            for (let k = 0; k < rowb; k++)
            {
       
                // j loops till cola
                for (let j = 0; j < cola; j++)
                {
       
                    // l loops till colb
                    for (let l = 0; l < colb; l++)
                    {
       
                        // Each element of matrix A is
                        // multiplied by whole Matrix B
                        // resp and stored as Matrix C
                        C[i + l + 1][j + k + 1] = A[i][j] * B[k][l];
                        document.write( C[i + l + 1][j + k + 1]+" ");
                    }
                }
                document.write("</br>");
            }
        }
    }
     
    let A = [ [ 1, 2 ],
             [ 3, 4 ],
             [ 1, 0 ] ];
                         
    let B = [ [ 0, 5, 2 ],
                  [ 6, 7, 3 ] ];
 
    Kroneckerproduct(A, B);
     
</script>


Output : 
 

0    5    2    0    10    4    
6    7    3    12   14    6    
0    15   6    0    20    8    
18   21   9    24   28    12    
0    5    2    0    0     0    
6    7    3    0    0     0

Time Complexity: O(rowa*rowb*cola*colb), as we are using nested loops.

Auxiliary Space: O((rowa + colb)*(rowb + cola)), as we are using extra space in matrix C.

Please refer complete article on Kronecker Product of two matrices for more details!

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments