Given two arrays, the task is to merge or concatenate them and store the result into another array.
Examples:
Input: arr1[] = { 1, 3, 4, 5}, arr2[] = {2, 4, 6, 8}
Output: arr3[] = {1, 3, 4, 5, 2, 4, 6, 8}Input: arr1[] = { 5, 8, 9}, arr2[] = {4, 7, 8}
Output: arr3[] = {5, 8, 9, 4, 7, 8}
Method 1: Using Predefined function
- First, we initialize two arrays lets say array a and array b, then we will store values in both the arrays.
- After that, we will calculate the length of arrays a and b and will store it into the variables lets say a1 and b1. We need to calculate the length of the array because by using the length of these arrays we can predict the length of the resultant array in which the elements will be store after merging.
- Then by using System.arraycopy(), we merge both the arrays and the result will be stored in the third array.
Below is the implementation of the above approach.
Java
// Java Program to demonstrate merging // two array using pre-defined method   import java.util.Arrays;   public class MergeTwoArrays1 {     public static void main(String[] args)     {         // first array         int [] a = { 10 , 20 , 30 , 40 };           // second array         int [] b = { 50 , 60 , 70 , 80 };           // determines length of firstArray         int a1 = a.length;                 // determines length of secondArray         int b1 = b.length;                 // resultant array size         int c1 = a1 + b1;           // create the resultant array         int [] c = new int [c1];           // using the pre-defined function arraycopy         System.arraycopy(a, 0 , c, 0 , a1);         System.arraycopy(b, 0 , c, a1, b1);           // prints the resultant array         System.out.println(Arrays.toString(c));     } } |
[10, 20, 30, 40, 50, 60, 70, 80]
Time Complexity: O(M + N)
Auxiliary Space: O(M + N)
Here, M is the length of array a and N is the length of array b.
Method 2: Without using pre-defined function
- First, we initialize two arrays lets say array a and array b, then we will store values in both the array.
- After that, we will calculate the length of both the arrays and will store it into the variables lets say a1 and b1. We need to calculate the length of the array because by using the length of these arrays we can predict the length of the resultant array in which the elements will be store after merging.
- Then the new array c which is the resultant array will be created.
- Now, the first loop is used to store the elements of the first array into the resultant array one by one and the second for loop to store the elements of the second array into the resultant array one by one.
- The final for loop is used to print the elements of the resultant array.
Below is the implementation of the above approach.
Java
// Java Program to demonstrate merging // two array without using pre-defined method   import java.io.*;   public class MergeTwoArrays2 {     public static void main(String[] args)     {           // first array         int a[] = { 30 , 25 , 40 };         // second array         int b[] = { 45 , 50 , 55 , 60 , 65 };           // determining length of first array         int a1 = a.length;         // determining length of second array         int b1 = b.length;           // resultant array size         int c1 = a1 + b1;           // Creating a new array         int [] c = new int [c1];           // Loop to store the elements of first         // array into resultant array         for ( int i = 0 ; i < a1; i = i + 1 ) {             // Storing the elements in             // the resultant array             c[i] = a[i];         }           // Loop to concat the elements of second         // array into resultant array         for ( int i = 0 ; i < b1; i = i + 1 ) {               // Storing the elements in the             // resultant array             c[a1 + i] = b[i];         }           // Loop to print the elements of         // resultant array after merging         for ( int i = 0 ; i < c1; i = i + 1 ) {                           // print the element             System.out.println(c[i]);         }     } } |
30 25 40 45 50 55 60 65
Time Complexity: O(M + N)
Auxiliary Space: O(M + N)
Here, M is the length of array a and N is the length of array b.