Sunday, November 16, 2025
HomeData Modelling & AIJava Program to Find difference between sums of two diagonals

Java Program to Find difference between sums of two diagonals

Given a matrix of n X n. The task is to calculate the absolute difference between the sums of its diagonal.
Examples: 
 

Input : mat[][] = 11 2 4
                   4 5 6
                  10 8 -12 
Output : 15
Sum of primary diagonal = 11 + 5 + (-12) = 4.
Sum of primary diagonal = 4 + 5 + 10 = 19.
Difference = |19 - 4| = 15.


Input : mat[][] = 10 2
                   4 5
Output : 7

 

Calculate the sums across the two diagonals of a square matrix. Along the first diagonal of the matrix, row index = column index i.e mat[i][j] lies on the first diagonal if i = j. Along the other diagonal, row index = n – 1 – column index i.e mat[i][j] lies on the second diagonal if i = n-1-j. By using two loops we traverse the entire matrix and calculate the sum across the diagonals of the matrix.
Below is the implementation of this approach: 
 

Java




// JAVA Code for Find difference between sums
// of two diagonals
class GFG {
     
    public static int difference(int arr[][], int n)
    {
        // Initialize sums of diagonals
        int d1 = 0, d2 = 0;
      
        for (int i = 0; i < n; i++)
        {
            for (int j = 0; j < n; j++)
            {
                // finding sum of primary diagonal
                if (i == j)
                    d1 += arr[i][j];
      
                // finding sum of secondary diagonal
                if (i == n - j - 1)
                    d2 += arr[i][j];
            }
        }
      
        // Absolute difference of the sums
        // across the diagonals
        return Math.abs(d1 - d2);
    }
     
    /* Driver program to test above function */
    public static void main(String[] args)
    {
        int n = 3;
          
        int arr[][] =
        {
            {11, 2, 4},
            {4 , 5, 6},
            {10, 8, -12}
        };
      
        System.out.print(difference(arr, n));
        
    }
  }
// This code is contributed by Arnav Kr. Mandal.


Output:  

15

Time Complexity: O(N*N), as we are using nested loops to traverse N*N times.

Auxiliary Space: O(1), as we are not using any extra space.
We can optimize above solution to work in O(n) using the patterns present in indexes of cells. 
 

Java




// JAVA Code for Find difference between sums
// of two diagonals
 
class GFG {
     
    public static int difference(int arr[][], int n)
    {
        // Initialize sums of diagonals
        int d1 = 0, d2 = 0;
      
        for (int i = 0; i < n; i++)
        {
            d1 += arr[i][i];
            d2 += arr[i][n-i-1];
        }
      
        // Absolute difference of the sums
        // across the diagonals
        return Math.abs(d1 - d2);
    }
     
    /* Driver program to test above function */
    public static void main(String[] args)
    {
        int n = 3;
          
        int arr[][] =
        {
            {11, 2, 4},
            {4 , 5, 6},
            {10, 8, -12}
        };
      
        System.out.print(difference(arr, n));
        
    }
  }
// This code is contributed by Arnav Kr. Mandal.


Output:  

15

Time Complexity: O(N), as we are using a loop to traverse N times.

Auxiliary Space: O(1), as we are not using any extra space.

Please refer complete article on Find difference between sums of two diagonals for more details!

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32402 POSTS0 COMMENTS
Milvus
95 POSTS0 COMMENTS
Nango Kala
6769 POSTS0 COMMENTS
Nicole Veronica
11920 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11990 POSTS0 COMMENTS
Shaida Kate Naidoo
6897 POSTS0 COMMENTS
Ted Musemwa
7150 POSTS0 COMMENTS
Thapelo Manthata
6851 POSTS0 COMMENTS
Umr Jansen
6843 POSTS0 COMMENTS