Wednesday, January 8, 2025
Google search engine
HomeLanguagesJavaJava Program to Find a Good Feedback Edge Set in a Graph

Java Program to Find a Good Feedback Edge Set in a Graph

Feedback edge set is a set of edges where F ⊆ E of a directed graph G, whose every cycle must contain at least one edge from F.

In simple words, Feedback edge set is a set of edges whose removal from the graph makes the graph directed acyclic graph.

Examples:

Input:

Output: 

Feedback Edge Set: ( 3 -> 1 ) ( 4 -> 3 )

Explanation:

Clearly two edges 3 -> 1 and 4 -> 3 will make the graph acyclic.

Approach:

A feedback edge set can be find out with simple BFS but if the given graph is a DAG then there have to be no edge set.

  1. Check if the given graph is already a directed acyclic graph and remove all the sink vertex.
  2. Return the modified graph and run BFS.
  3. Mark the visited vertices while running BFS.
  4. If marked vertex is visited once again, then print out that edge as feedback edge.

Code:

Java




// Java Program to find a good feedback
// edge set in a graph
 
import java.util.*;
  
class Graph
{
    // Map for storing graph in adj list
    private Map<Integer, List<Integer>> adjacencyList;
 
    // Graph Constructor
    public Graph(int v)
    {
        // Create adj List
        adjacencyList = new HashMap<Integer, List<Integer>>();
         
        // Create empty adj list for each vertex
        for (int i = 1; i <= v; i++)
        {
            adjacencyList.put(i, new LinkedList<Integer>());
        }
    }
 
    // Adding new edge
    public void setEdge(int src, int dest)
    {
        List<Integer> neighbours = adjacencyList.get(src);
        neighbours.add(dest);
    }
  
    // Function for checking DAG
    // and removing sink vertex
    public Graph checkAcyclic()
    {
        Integer count = 0;
         
        // Iterator for all the vertices
        Iterator<Integer> nodes  = this.adjacencyList.keySet().iterator();
        Integer size = this.adjacencyList.size() - 1;
         
        // Traverse till the last node
        while (nodes.hasNext())
        {
            Integer i = nodes.next();
             
            // Get the neighbours of the selected vertex
            List<Integer> adjList = this.adjacencyList.get(i);
             
            // If the given graph is DAG
            if (count == size)
            {
                return this;
            }
             
            // If it's a sink vertex
            if (adjList.size() == 0)
            {
                count++;
                Iterator<Integer> neighbour
                  = this.adjacencyList.keySet().iterator();
                 
                // Remove all edges from that vertex
                while (neighbour.hasNext())
                {
                    Integer j = neighbour.next();
                    List<Integer> edges  = this.adjacencyList.get(j);
                   
                    if (edges.contains(i))
                    {
                        edges.remove(i);
                    }
                }
                 
                // Remove the vertex from the graph
                this.adjacencyList.remove(i);
               
                nodes = this.adjacencyList.keySet().iterator();
            }
        }
        // Return the modified graph
        return this;
    }
  
    // Function to find the
    // feedback edge set
    public boolean getFeedbackEdgeSet()
    {
        int v=this.adjacencyList.size();
        boolean flag = false;
         
        // Array to mark the visited vertices
        int[] visited = new int[v + 1];
         
        // Iterator for all the vertices
        Iterator<Integer> nodes
          = this.adjacencyList.keySet().iterator();
         
        // Traverse till the last node
        while (nodes.hasNext())
        {
            Integer i = nodes.next();
             
            // Get the neighbours of the vertex
            List<Integer> neighbours = this.adjacencyList.get(i);
           
            visited[i] = 1;
            if (neighbours.size() != 0)
            {
                for (int j = 0; j < neighbours.size(); j++)
                {
                    // If the vertex is already visited
                    if (visited[neighbours.get(j)] == 1)
                    {
                        // Mark flag to true denoting
                        // the given graph is not DAG
                        flag = true;
                       
                        System.out.print("( "+i+" -> "+
                                         neighbours.get(j)+" ) ");
                    }
                     
                    // Mark if not visited yet
                    else
                    {
                        visited[neighbours.get(j)] = 1;
                    }
                }
            }
        }
        return flag;
    }
}
 
// Driver Code
public class GFG
{
    public static void main(String args[])
    {
        // Number of vertices and edges
        int v = 4;
        int e = 5;
         
        // Initialize new Graph
        Graph g = new Graph(v);
         
        // Edges
        g.setEdge(1,2);
        g.setEdge(2,3);
        g.setEdge(4,3);
        g.setEdge(1,4);
        g.setEdge(3,1);
         
        // Run the function
        g = g.checkAcyclic();
       
        System.out.print("Feedback Edge Set: ");
       
        if (g.getFeedbackEdgeSet() == false)
        {
            System.out.println("None");
        }
    }
}


 
 

Output

Feedback Edge Set: ( 3 -> 1 ) ( 4 -> 3 ) 

 

Time Complexity: O(E*V) where E is the number of edges and V is the number of vertices.

 

RELATED ARTICLES

Most Popular

Recent Comments