For a given number N, the purpose is to find all the prime numbers from 1 to N.
Examples:
Input: N = 11 Output: 2, 3, 5, 7, 11
Input: N = 7 Output: 2, 3, 5, 7
Approach 1:
- Firstly, consider the given number N as input.
- Then apply a for loop in order to iterate the numbers from 1 to N.
- At last, check if each number is a prime number and if it’s a prime number then print it using brute-force method.
Java
// Java program to find all the // prime numbers from 1 to N class gfg { // Function to print all the // prime numbers till N static void prime_N( int N) { // Declaring the variables int x, y, flg; // Printing display message System.out.println( "All the Prime numbers within 1 and " + N + " are:" ); // Using for loop for traversing all // the numbers from 1 to N for (x = 1 ; x <= N; x++) { // Omit 0 and 1 as they are // neither prime nor composite if (x == 1 || x == 0 ) continue ; // Using flag variable to check // if x is prime or not flg = 1 ; for (y = 2 ; y <= x / 2 ; ++y) { if (x % y == 0 ) { flg = 0 ; break ; } } // If flag is 1 then x is prime but // if flag is 0 then x is not prime if (flg == 1 ) System.out.print(x + " " ); } } // The Driver code public static void main(String[] args) { int N = 45 ; prime_N(N); } } |
All the Prime numbers within 1 and 45 are: 2 3 5 7 11 13 17 19 23 29 31 37 41 43
Time Complexity: O(N2)
Auxiliary Space: O(1)
Approach 2:
- Firstly, consider the given number N as input.
- Then apply a for loop in order to iterate the numbers from 1 to N.
- At last, check if each number is a prime number and if it’s a prime number then print it using the square root method.
Java
// Java program to find all the // prime numbers from 1 to N class gfg { // Function to print all the // prime numbers till N static void prime_N( int N) { // Declaring the variables int x, y, flg; // Printing display message System.out.println( "All the Prime numbers within 1 and " + N + " are:" ); // Using for loop for traversing all // the numbers from 1 to N for (x = 2 ; x <= N; x++) { // Using flag variable to check // if x is prime or not flg = 1 ; for (y = 2 ; y * y <= x; y++) { if (x % y == 0 ) { flg = 0 ; break ; } } // If flag is 1 then x is prime but // if flag is 0 then x is not prime if (flg == 1 ) System.out.print(x + " " ); } } // The Driver code public static void main(String[] args) { int N = 45 ; prime_N(N); } } |
All the Prime numbers within 1 and 45 are: 2 3 5 7 11 13 17 19 23 29 31 37 41 43
Time Complexity: O(N3/2)
Approach 3:
- Firstly, consider the given number N as input.
- Use Sieve of Eratosthenes.
Java
// Java program to print all // primes smaller than or equal to // n using Sieve of Eratosthenes class SieveOfEratosthenes { void sieveOfEratosthenes( int n) { // Create a boolean array // "prime[0..n]" and // initialize all entries // it as true. A value in // prime[i] will finally be // false if i is Not a // prime, else true. boolean prime[] = new boolean [n + 1 ]; for ( int i = 0 ; i <= n; i++) prime[i] = true ; for ( int p = 2 ; p * p <= n; p++) { // If prime[p] is not changed, then it is a // prime if (prime[p] == true ) { // Update all multiples of p for ( int i = p * p; i <= n; i += p) prime[i] = false ; } } // Print all prime numbers for ( int i = 2 ; i <= n; i++) { if (prime[i] == true ) System.out.print(i + " " ); } } // Driver Code public static void main(String args[]) { int N = 45 ; System.out.println( "All the Prime numbers within 1 and " + N + " are:" ); SieveOfEratosthenes g = new SieveOfEratosthenes(); g.sieveOfEratosthenes(N); } } |
All the Prime numbers within 1 and 45 are: 2 3 5 7 11 13 17 19 23 29 31 37 41 43
Time complexity : O(n*log(log(n)))
Auxiliary space: O(n) as using extra space for array prime