Monday, January 13, 2025
Google search engine
HomeData Modelling & AIJava Program for Search an element in a sorted and rotated ...

Java Program for Search an element in a sorted and rotated array

An element in a sorted array can be found in O(log n) time via binary search. But suppose we rotate an ascending order sorted array at some pivot unknown to you beforehand. So for instance, 1 2 3 4 5 might become 3 4 5 1 2. Devise a way to find an element in the rotated array in O(log n) time.
 

sortedPivotedArray

Example: 
 

Input  : arr[] = {5, 6, 7, 8, 9, 10, 1, 2, 3};
         key = 3
Output : Found at index 8

Input  : arr[] = {5, 6, 7, 8, 9, 10, 1, 2, 3};
         key = 30
Output : Not found

Input : arr[] = {30, 40, 50, 10, 20}
        key = 10   
Output : Found at index 3

 

 

All solutions provided here assume that all elements in the array are distinct.
Basic Solution: 
Approach: 
 

  1. The idea is to find the pivot point, divide the array in two sub-arrays and perform binary search.
  2. The main idea for finding pivot is – for a sorted (in increasing order) and pivoted array, pivot element is the only element for which next element to it is smaller than it.
  3. Using the above statement and binary search pivot can be found.
  4. After the pivot is found out divide the array in two sub-arrays.
  5. Now the individual sub – arrays are sorted so the element can be searched using Binary Search.

Implementation: 
 

Input arr[] = {3, 4, 5, 1, 2}
Element to Search = 1
  1) Find out pivot point and divide the array in two
      sub-arrays. (pivot = 2) /*Index of 5*/
  2) Now call binary search for one of the two sub-arrays.
      (a) If element is greater than 0th element then
             search in left array
      (b) Else Search in right array
          (1 will go in else as 1 < 0th element(3))
  3) If element is found in selected sub-array then return index
     Else return -1.

Below is the implementation of the above approach: 
 

Java




/* Java program to search an element 
   in a sorted and pivoted array*/
  
class Main {
  
    /* Searches an element key in a 
       pivoted sorted array arrp[]
       of size n */
    static int pivotedBinarySearch(int arr[], int n, int key)
    {
        int pivot = findPivot(arr, 0, n - 1);
  
        // If we didn't find a pivot, then
        // array is not rotated at all
        if (pivot == -1)
            return binarySearch(arr, 0, n - 1, key);
  
        // If we found a pivot, then first
        // compare with pivot and then
        // search in two subarrays around pivot
        if (arr[pivot] == key)
            return pivot;
        if (arr[0] <= key)
            return binarySearch(arr, 0, pivot - 1, key);
        return binarySearch(arr, pivot + 1, n - 1, key);
    }
  
    /* Function to get pivot. For array 
       3, 4, 5, 6, 1, 2 it returns
       3 (index of 6) */
    static int findPivot(int arr[], int low, int high)
    {
        // base cases
        if (high < low)
            return -1;
        if (high == low)
            return low;
  
        /* low + (high - low)/2; */
        int mid = (low + high) / 2;
        if (mid < high && arr[mid] > arr[mid + 1])
            return mid;
        if (mid > low && arr[mid] < arr[mid - 1])
            return (mid - 1);
        if (arr[low] >= arr[mid])
            return findPivot(arr, low, mid - 1);
        return findPivot(arr, mid + 1, high);
    }
  
    /* Standard Binary Search function */
    static int binarySearch(int arr[], int low, int high, int key)
    {
        if (high < low)
            return -1;
  
        /* low + (high - low)/2; */
        int mid = (low + high) / 2;
        if (key == arr[mid])
            return mid;
        if (key > arr[mid])
            return binarySearch(arr, (mid + 1), high, key);
        return binarySearch(arr, low, (mid - 1), key);
    }
  
    // main function
    public static void main(String args[])
    {
        // Let us search 3 in below array
        int arr1[] = { 5, 6, 7, 8, 9, 10, 1, 2, 3 };
        int n = arr1.length;
        int key = 3;
        System.out.println("Index of the element is : "
                           + pivotedBinarySearch(arr1, n, key));
    }
}


Output: 
 

Index of the element is : 8

Complexity Analysis: 
 

  • Time Complexity: O(log n). 
    Binary Search requires log n comparisons to find the element. So time complexity is O(log n).
  • Space Complexity:O(1), No extra space is required.

Thanks to Ajay Mishra for initial solution.
Improved Solution: 
Approach: Instead of two or more pass of binary search the result can be found in one pass of binary search. The binary search needs to be modified to perform the search. The idea is to create a recursive function that takes l and r as range in input and the key.
 

1) Find middle point mid = (l + h)/2
2) If key is present at middle point, return mid.
3) Else If arr[l..mid] is sorted
    a) If key to be searched lies in range from arr[l]
       to arr[mid], recur for arr[l..mid].
    b) Else recur for arr[mid+1..h]
4) Else (arr[mid+1..h] must be sorted)
    a) If key to be searched lies in range from arr[mid+1]
       to arr[h], recur for arr[mid+1..h].
    b) Else recur for arr[l..mid] 

Below is the implementation of above idea: 
 

Java




/* Java program to search an element in 
   sorted and rotated array using
   single pass of Binary Search*/
  
class Main {
    // Returns index of key in arr[l..h]
    // if key is present, otherwise returns -1
    static int search(int arr[], int l, int h, int key)
    {
        if (l > h)
            return -1;
  
        int mid = (l + h) / 2;
        if (arr[mid] == key)
            return mid;
  
        /* If arr[l...mid] first subarray is sorted */
        if (arr[l] <= arr[mid]) {
            /* As this subarray is sorted, we 
               can quickly check if key lies in 
               half or other half */
            if (key >= arr[l] && key <= arr[mid])
                return search(arr, l, mid - 1, key);
            /*If key not lies in first half subarray, 
           Divide other half  into two subarrays,
           such that we can quickly check if key lies 
           in other half */
            return search(arr, mid + 1, h, key);
        }
  
        /* If arr[l..mid] first subarray is not sorted, 
           then arr[mid... h] must be sorted subarray*/
        if (key >= arr[mid] && key <= arr[h])
            return search(arr, mid + 1, h, key);
  
        return search(arr, l, mid - 1, key);
    }
  
    // main function
    public static void main(String args[])
    {
        int arr[] = { 4, 5, 6, 7, 8, 9, 1, 2, 3 };
        int n = arr.length;
        int key = 6;
        int i = search(arr, 0, n - 1, key);
        if (i != -1)
            System.out.println("Index: " + i);
        else
            System.out.println("Key not found");
    }
}


Output: 

Index: 2

Complexity Analysis: 
 

  • Time Complexity: O(log n). 
    Binary Search requires log n comparisons to find the element. So time complexity is O(log n).
  • Space Complexity: O(1). 
    As no extra space is required.

Approach 3: Using Stacks:

The stack-based approach can be used to search for an element in a sorted and rotated array. The basic idea is to traverse the array and push the elements onto a stack until the element being searched is found. Once the element is found, the index of the element is returned.

To implement this approach, we can start by creating an empty stack and pushing the first element
of the array onto the stack. Then, we can traverse the remaining elements of the array and compare
them with the element being searched. If the element being searched is found, we return the index
of the element. Otherwise, we push the element onto the stack.
If the current element is less than the top element of the stack, it means that we have
reached the end of the sorted part of the array. So, we pop the elements from the stack until 
we find an element that is smaller than the current element or the stack becomes empty.
If the stack becomes empty, it means that we have traversed the entire array and the element 
is not present.

If the current element is greater than the top element of the stack, it means that we are still
in the sorted part of the array. So, we simply push the element onto the stack and continue 
traversing the array.

Here is the code of above approach:

Java




import java.util.Stack;
  
class Main {
    // Returns index of key in arr[l..h] if
    // key is present, otherwise returns -1
    public static int search(int[] arr, int n, int key) {
        // Create a stack to hold the elements
        Stack<Integer> s = new Stack<Integer>();
  
        // Push all the elements of the array onto the stack
        for (int i = 0; i < n; i++)
            s.push(arr[i]);
  
        // Find the pivot element
        int pivot = 0;
        while (!s.empty()) {
            int top = s.pop();
            if (s.empty() || top < s.peek()) {
                pivot = n - pivot - 1;
                break;
            }
            pivot++;
        }
  
        // Binary search for the key in the appropriate subarray
        int l = 0, h = n - 1;
        if (key >= arr[pivot] && key <= arr[h])
            l = pivot;
        else
            h = pivot - 1;
  
        while (l <= h) {
            int mid = (l + h) / 2;
            if (arr[mid] == key)
                return mid;
            else if (arr[mid] < key)
                l = mid + 1;
            else
                h = mid - 1;
        }
  
        // Key not found
        return -1;
    }
  
    // Driver program
    public static void main(String[] args) {
        int[] arr = {4, 5, 6, 7, 8, 9, 1, 2, 3};
        int n = arr.length;
        int key = 6;
        int i = search(arr, n, key);
  
        if (i != -1)
            System.out.println("Index: " + i);
        else
            System.out.println("Key not found");
    }
}


Output:

Index: 2

Complexity Analysis: 
 

Time Complexity: O(N), where N is the size of the array
Space Complexity: O(N), where N is the size of the array

Thanks to Gaurav Ahirwar for suggesting above solution. 
How to handle duplicates? 
It doesn’t look possible to search in O(Logn) time in all cases when duplicates are allowed. For example consider searching 0 in {2, 2, 2, 2, 2, 2, 2, 2, 0, 2} and {2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2}. 
It doesn’t look possible to decide whether to recur for the left half or right half by doing a constant number of comparisons at the middle.
 

Similar Articles: 
 

Please write comments if you find any bug in the above codes/algorithms, or find other ways to solve the same problem.
 

Please refer complete article on Search an element in a sorted and rotated array for more details!

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments