Given a m x n 2D matrix, check if it is a Markov Matrix.
Markov Matrix : The matrix in which the sum of each row is equal to 1.
Examples:
Input : 1 0 0 0.5 0 0.5 0 0 1 Output : yes Explanation : Sum of each row results to 1, therefore it is a Markov Matrix. Input : 1 0 0 0 0 2 1 0 0 Output : no
Approach : Initialize a 2D array, then take another single dimensional array to store the sum of each rows of the matrix, and check whether all the sum stored in this 1D array is equal to 1, if yes then it is Markov matrix else not.
Java
// Java code to check Markov Matrix import java.io.*; public class markov { static boolean checkMarkov( double m[][]) { // outer loop to access rows // and inner to access columns for ( int i = 0 ; i < m.length; i++) { // Find sum of current row double sum = 0 ; for ( int j = 0 ; j < m[i].length; j++) sum = sum + m[i][j]; if (sum != 1 ) return false ; } return true ; } public static void main(String args[]) { // Matrix to check double m[][] = { { 0 , 0 , 1 }, { 0.5 , 0 , 0.5 }, { 1 , 0 , 0 } }; // calls the function check() if (checkMarkov(m)) System.out.println( " yes " ); else System.out.println( " no " ); } } |
Output :
yes
Time Complexity: O(M*N), Here M and N are the number of rows and columns respectively of a given matrix
Auxiliary Space: O(1)
Please refer complete article on Program for Markov matrix for more details!