Monday, January 6, 2025
Google search engine
HomeLanguagesJavaJava.lang.StrictMath class in Java | Set 1

Java.lang.StrictMath class in Java | Set 1

StrictMath Class methods helps to perform the numeric operations like square, square root, cube, cube root, exponential and trigonometric operations

Declaration :

public final class StrictMath
   extends Object

NaN argument?
A constant holding a Not-a-Number (NaN) value of type double. It is equivalent to the value returned by Double.longBitsToDouble(0x7ff8000000000000L).

Methods of lang.math class :
1. acos() : java.lang.StrictMath.acos() method returns the arc cosine value of the passed argument.
arc cosine is inverse cosine of the argument passed.
acos(arg) = cos-1 of arg

Special Case : Result is NaN, if the argument is NaN or its absolute value is greater than 1. 

Syntax:

public static double acos(double a)
Parameters:
a - the argument whose arc cosine value we need.
    argument is taken as radian    
Returns:
arc cosine value of the argument.

2. abs() : java.lang.StrictMath.abs() method returns the absolute value of any type of the argument passed. This method can handle all the data types.

  • Result is positive zero, if the argument is positive zero or negative zero.
  • Result is positive infinity if the argument is infinite.
  • Result is NaN, if passed argument is NaN.

Syntax:

public static datatype abs(datatype arg)
Parameters:
arg - the argument whose absolute value we need
Returns:
absolute value of the passed argument.

3. toRadians() : java.lang.StrictMath.toRadians(double deg) method converts argument (degree) to radians.
Note: StrictMath class usually takes radians as an input which is very much different in real life applications since angles is usually represented in degrees. 

Syntax:

public static double toRadians(double deg)
Parameters:
deg - degree angle needs to be in radian.
Returns:
radians equivalent of the degree-argument passed.

Java code explaining abs(), acos(), toRadians() method in lang.StrictMath class. 

Java




// Java program explaining lang.StrictMath class methods
// abs(), acos(), toRadians()
  
import java.lang.*;
public class NewClass
{
    public static void main(String[] args)
    {
        // Declaring the variables
        int Vali = -1;
        float Valf = .5f;
  
        // Printing the values
        System.out.println("Initial value of int  : " + Vali);
        System.out.println("Initial value of int  : " + Valf);
  
  
        // Use of .abs() method to get the absoluteValue
        int Absi = StrictMath.abs(Vali);
        float Absf = StrictMath.abs(Valf);
  
        System.out.println("Absolute value of int : " + Absi);
        System.out.println("Absolute value of int : " + Absf);
        System.out.println("");
  
        // Use of acos() method
        // Value greater than 1, so passing NaN
        double Acosi = StrictMath.acos(60);
        System.out.println("acos value of Acosi : " + Acosi);
        double x = StrictMath.PI;
  
        // Use of toRadian() method
        x = StrictMath.toRadians(x);
        double Acosj = StrictMath.acos(x);
        System.out.println("acos value of Acosj : " + Acosj);
          
    }
}


Output :

Initial value of int  : -1
Initial value of int  : 0.5
Absolute value of int : 1
Absolute value of int : 0.5

acos value of Acosi : NaN
acos value of Acosj : 1.5159376794536454

4. cbrt() : java.lang.StrictMath.cbrt() method returns the cube root of the passed argument. 

Special Point : 

  • Result is NaN, if the argument is NaN.
  • Result is an infinity with the same sign as the argument if the argument is infinite.
  • Result is a zero, if the argument is zero.

Syntax:

public static double cbrt(double arg)
Parameters:
arg - argument passed. 
Returns:
cube root of the argument passed

5. asin() : java.lang.StrictMath.asin() method returns the arc sine value of the method argument passed. Returned angle is in the range -pi/2 to pi/2. 
arc sine is inverse sine of the argument passed.
asin(arg) = sine-1 of arg

Special Case : 

  • Result is NaN, if the argument is NaN or its absolute value is greater than 1.
  • Result is a zero, if the argument is zero.

Syntax:

public static double asin(double arg)
Parameters:
arg - argument passed. 
Returns:
arc sine of the argument passed.

Java code explaining asin(), cbrt() method in lang.StrictMath class.

Java




// Java program explaining lang.StrictMath class methods
// asin(), cbrt()
  
import java.lang.*;
public class NewClass
{
  
    public static void main(String[] args)
    {
        int a = 1, b = 8;
        int radd = a + b;
  
        // Use of asin() method
        // Value greater than 1, so passing NaN
        double Asini = StrictMath.asin(radd);
        System.out.println("asin value of Asini : " + Asini);
        double x = StrictMath.PI;
  
        // Use of toRadian() method
        x = StrictMath.toRadians(x);
        double Asinj = StrictMath.asin(x);
        System.out.println("asin value of Asinj : " + Asinj);
        System.out.println("");
  
        // Use of cbrt() method
        double cbrtval = StrictMath.cbrt(216);
        System.out.println("cube root : " + cbrtval);
  
    }
}


Output : 

asin value of Asini : NaN
asin value of Asinj : 0.054858647341251204

cube root : 6.0

6. log() : java.lang.StrictMath.log() method returns the logarithmic value of the passed argument. 

Syntax:
public static double log(double arg)
Parameters:
arg - argument passed. 
Returns:
logarithmic value of the argument passed.

7. hypot() : java.lang.StrictMath.hypot(double p, double b) method returns hypotenuse of a right triangle on passing the triangle’s base and perpendicular as arguments.
hypotenuse = [perpendicular2 + base2]1/2

Important Point : 

  • If either argument is infinite, then the result is positive infinity.
  • If either argument is NaN and neither argument is infinite, then the result is NaN.
Syntax:
public static double hypot(double p, double b)
Parameters:
p - perpendicular of the right triangle
b - base of the right triangle
Returns:
hypotenuse of the right triangle

8. floor() : java.lang.StrictMath.floor() method returns the floor value of an argument i.e. the closest integer value which is either less or equal to the passed argument.
eg : 101.23 has floor value = 101

Important point : Same argument is resulted if  passed an NaN or infinite argument.

Syntax:
public static double floor(double arg)
Parameters:
arg - the argument whose floor value we need
Returns:closest possible value that is either less than 
                or equal to the argument passed

9. IEEEremainder() : java.lang.StrictMath.IEEERemainder(double d1, double d2) method returns the remainder value by applying remainder operation on two arguments w.r.t IEEE 754 standard. 
Remainder value = d1 – d2 * n
where,
n = closest exact value of d1/d2 

Syntax:
public static double IEEEremainder(double d1, double d2)
Parameters:
d1 - dividend 
d2 - divisor
Returns:
remainder when f1(dividend) is divided by(divisor)

Java code explaining floor(), hypot(), IEEEremainder(), log() method in lang.StrictMath class. 

Java




// Java program explaining lang.MATH class methods
// floor(), hypot(), IEEEremainder(), log()
  
import java.lang.*;
public class NewClass
{
  
    public static void main(String[] args)
    {
        // Use of floor method
        double f1 = 30.56, f2 = -56.34;
        f1 = StrictMath.floor(f1);
        System.out.println("Floor value of f1 : " + f1);
  
        f2 = StrictMath.floor(f2);
        System.out.println("Floor value of f2 : "  + f2);
        System.out.println("");
  
        // Use of hypot() method
        double p = 12, b = -5;
        double h = StrictMath.hypot(p, b);
        System.out.println("Hypotenuse : "+h);
        System.out.println("");
  
        // Use of IEEEremainder() method
        double d1 = 105, d2 = 2;
        double r = StrictMath.IEEEremainder(d1, d2);
        System.out.println("Remainder : " + r);
        System.out.println("");
          
        // Use of log() method
        double l = 10;
        l = StrictMath.log(l);
        System.out.println("Log value of 10 : " + l);
          
    }
}


Output : 

Floor value of f1 : 30.0
Floor value of f2 : -57.0

Hypotenuse : 13.0

Remainder : 1.0

Log value of 10 : 2.302585092994046

10. ceil() : java.lang.StrictMath.ceil(double a) method returns the smallest possible value which is either greater or equal to the argument passed. The returned value is a mathematical integer.

  • Result is same, if the returned value is already a mathematical integer.
  • Result is same, if the passed argument is NaN or infinite or zero.
  • Result is negative zero, if the passed argument is less than zero but greater than -1.0

Syntax:

public static double ceil(double arg)
Parameters:
arg - the argument value
Returns:
smallest possible value(mathematical integer)
which is either greater or equal to the argument passed

11. copySign() : java.lang.StrictMath.copySign() method returns first floating-point argument but having the sign of second argument.

Syntax:

public static double copySign(double m, double s)
                    or
public static float copySign(float m, float s)
Parameters:
m - magnitude 
s - sign 
Returns:
returns second argument with sign of first floating-point argument.

12. atan() : java.lang.StrictMath.atan() method returns returns the arc tangent of the method argument value. The returned angle is in the range -pi/2 through pi/2.
arc tan is inverse tan of the argument passed.
atan(arg) = tan inverse of arg

Special Case : 

  • Result is NaN, if the passed argument is NaN or its absolute value is > 1.
  • Result is zero, if argument is zero.

Syntax:

public static double atan(double a)
Parameters:
a - the argument whose arc tangent value we need.
    argument is taken as radian
Returns:
arc tan value of the argument.

Java code explaining atan(), ceil(), copySign() method in lang.StrictMath class. 

Java




// Java program explaining lang.StrictMath class methods
// atan(), ceil(), copySign()
  
import java.math.*;
public class NewClass
{
    public static void main(String[] args)
    {
        // Use of atan() method
        double Atani = StrictMath.atan(0);
        System.out.println("atan value of Atani : " + Atani);
        double x = StrictMath.PI / 2;
  
        // Use of toRadian() method
        x = StrictMath.toRadians(x);
        double Atanj = StrictMath.atan(x);
        System.out.println("atan value of Atanj : " + Atanj);
        System.out.println("");
  
  
        // Use of ceil() method
        double val = 15.34, ceilval;
        ceilval = StrictMath.ceil(val);
        System.out.println("ceil value of val : " + ceilval);
        System.out.println("");
  
        double dblMag = val;
        double dblSign1 = 3;
        double dblSign2 = -3;
  
  
        // Use of copySign() method
        double result1 = StrictMath.copySign(dblMag, dblSign1);
        System.out.println("copySign1 : " + result1);
  
        double result2 = StrictMath.copySign(dblMag, dblSign2);
        System.out.println("copySign2 : " + result2);
          
    }
}


Output : 

atan value of Atani : 0.0
atan value of Atanj : 0.0274087022410345

ceil value of val : 16.0

copySign1 : 15.34
copySign2 : -15.34

Refer more methods of lang.StrictMath class at : JAva.lang.StrictMath class in Java | Set 2
This article is contributed by Mohit Gupta_OMG 😀. If you like Lazyroar and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the Lazyroar main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

RELATED ARTICLES

Most Popular

Recent Comments