Given a complete binary tree, traverse it such that all the boundary nodes are visited in Anti-Clockwise order starting from the root.
Example:
Input: 18 / \ 15 30 / \ / \ 40 50 100 20 Output: 18 15 40 50 100 20 30
Approach:
- Traverse left-most nodes of the tree from top to down. (Left boundary)
- Traverse bottom-most level of the tree from left to right. (Leaf nodes)
- Traverse right-most nodes of the tree from bottom to up. (Right boundary)
We can traverse the left boundary quite easily with the help of a while loop that checks when the node doesn’t have any left child. Similarly, we can traverse the right boundary quite easily with the help of a while loop that checks when the node doesn’t have any right child.
The main challenge here is to traverse the last level of the tree in left to right order. To traverse level-wise there is BFS and order of left to right can be taken care of by pushing left nodes in the queue first. So the only thing left now is to make sure it is the last level. Just check whether the node has any child and only include them.
We will have to take special care of the corner case that same nodes are not traversed again. In the example above 40 is a part of the left boundary as well as leaf nodes. Similarly, 20 is a part of the right boundary as well as leaf nodes.
So we will have to traverse only till the second last node of both the boundaries in that case. Also keep in mind we should not traverse the root again.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; /* A binary tree node has data, pointer to left child and a pointer to right child */ struct Node { int data; struct Node *left, *right; }; /* Helper function that allocates a new node with the given data and NULL left and right pointers. */ struct Node* newNode( int data) { Node* temp = new Node; temp->data = data; temp->left = temp->right = NULL; return temp; } // Function to print the nodes of a complete // binary tree in boundary traversal order void boundaryTraversal(Node* root) { if (root) { // If there is only 1 node print it // and return if (!(root->left) && !(root->right)) { cout << root->data << endl; return ; } // List to store order of traversed // nodes vector<Node*> list; list.push_back(root); // Traverse left boundary without root // and last node Node* L = root->left; while (L->left) { list.push_back(L); L = L->left; } // BFS designed to only include leaf nodes queue<Node*> q; q.push(root); while (!q.empty()) { Node* temp = q.front(); q.pop(); if (!(temp->left) && !(temp->right)) { list.push_back(temp); } if (temp->left) { q.push(temp->left); } if (temp->right) { q.push(temp->right); } } // Traverse right boundary without root // and last node vector<Node*> list_r; Node* R = root->right; while (R->right) { list_r.push_back(R); R = R->right; } // Reversing the order reverse(list_r.begin(), list_r.end()); // Concatenating the two lists list.insert(list.end(), list_r.begin(), list_r.end()); // Printing the node's data from the list for ( auto i : list) { cout << i->data << " " ; } cout << endl; return ; } } // Driver code int main() { // Root node of the tree Node* root = newNode(20); root->left = newNode(8); root->right = newNode(22); root->left->left = newNode(4); root->left->right = newNode(12); root->right->left = newNode(10); root->right->right = newNode(25); boundaryTraversal(root); return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG{ /* A binary tree node has data, pointer to left child and a pointer to right child */ static class Node { int data; Node left, right; }; /* Helper function that allocates a new node with the given data and null left and right pointers. */ static Node newNode( int data) { Node temp = new Node(); temp.data = data; temp.left = temp.right = null ; return temp; } // Function to print the nodes of a complete // binary tree in boundary traversal order static void boundaryTraversal(Node root) { if (root != null ) { // If there is only 1 node print it // and return if ((root.left == null ) && (root.right == null )) { System.out.print(root.data + "\n" ); return ; } // List to store order of traversed // nodes Vector<Node> list = new Vector<Node>(); list.add(root); // Traverse left boundary without root // and last node Node L = root.left; while (L.left != null ) { list.add(L); L = L.left; } // BFS designed to only include leaf nodes Queue<Node> q = new LinkedList<>(); q.add(root); while (!q.isEmpty()) { Node temp = q.peek(); q.remove(); if ((temp.left == null ) && (temp.right == null )) { list.add(temp); } if (temp.left != null ) { q.add(temp.left); } if (temp.right != null ) { q.add(temp.right); } } // Traverse right boundary without root // and last node Vector<Node> list_r = new Vector<Node>(); Node R = root.right; while (R.right != null ) { list_r.add(R); R = R.right; } // Reversing the order Collections.reverse(list_r); // Concatenating the two lists list.addAll(list_r); // Printing the node's data from the list for (Node i : list) { System.out.print(i.data + " " ); } System.out.println(); return ; } } // Driver code public static void main(String[] args) { // Root node of the tree Node root = newNode( 20 ); root.left = newNode( 8 ); root.right = newNode( 22 ); root.left.left = newNode( 4 ); root.left.right = newNode( 12 ); root.right.left = newNode( 10 ); root.right.right = newNode( 25 ); boundaryTraversal(root); } } // This code is contributed by Princi Singh |
Python
# Python implementation of the approach from collections import deque # A binary tree node class Node: # A constructor for making a new node def __init__( self , key): self .data = key self .left = None self .right = None # Function to print the nodes of a complete # binary tree in boundary traversal order def boundaryTraversal(root): # If there is only 1 node print it and return if root: if not root.left and not root.right: print (root.data) return # List to store order of traversed nodes list = [] list .append(root) # Traverse left boundary without root # and last node temp = root.left while temp.left: list .append(temp) temp = temp.left # BFS designed to only include leaf nodes q = deque() q.append(root) while len (q) ! = 0 : x = q.pop() if not x.left and not x.right: list .append(x) if x.right: q.append(x.right) if x.left: q.append(x.left) # Traverse right boundary without root # and last node list_r = [] temp = root.right while temp.right: list .append(temp) temp = temp.right # Reversing the order list_r = list_r[:: - 1 ] # Concatenating the two lists list + = list_r # Printing the node's data from the list print ( " " .join([ str (i.data) for i in list ])) return # Root node of the tree root = Node( 20 ) root.left = Node( 8 ) root.right = Node( 22 ) root.left.left = Node( 4 ) root.left.right = Node( 12 ) root.right.left = Node( 10 ) root.right.right = Node( 25 ) boundaryTraversal(root) |
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { /* A binary tree node has data, pointer to left child and a pointer to right child */ class Node { public int data; public Node left, right; }; /* Helper function that allocates a new node with the given data and null left and right pointers. */ static Node newNode( int data) { Node temp = new Node(); temp.data = data; temp.left = temp.right = null ; return temp; } // Function to print the nodes of a complete // binary tree in boundary traversal order static void boundaryTraversal(Node root) { if (root != null ) { // If there is only 1 node print it // and return if ((root.left == null ) && (root.right == null )) { Console.Write(root.data + "\n" ); return ; } // List to store order of traversed // nodes List<Node> list = new List<Node>(); list.Add(root); // Traverse left boundary without root // and last node Node L = root.left; while (L.left != null ) { list.Add(L); L = L.left; } // BFS designed to only include leaf nodes Queue<Node> q = new Queue<Node>(); q.Enqueue(root); while (q.Count != 0) { Node temp = q.Peek(); q.Dequeue(); if ((temp.left == null ) && (temp.right == null )) { list.Add(temp); } if (temp.left != null ) { q.Enqueue(temp.left); } if (temp.right != null ) { q.Enqueue(temp.right); } } // Traverse right boundary without root // and last node List<Node> list_r = new List<Node>(); Node R = root.right; while (R.right != null ) { list_r.Add(R); R = R.right; } // Reversing the order list_r.Reverse(); // Concatenating the two lists list.InsertRange(list.Count-1, list_r); // Printing the node's data from the list foreach (Node i in list) { Console.Write(i.data + " " ); } Console.WriteLine(); return ; } } // Driver code public static void Main(String[] args) { // Root node of the tree Node root = newNode(20); root.left = newNode(8); root.right = newNode(22); root.left.left = newNode(4); root.left.right = newNode(12); root.right.left = newNode(10); root.right.right = newNode(25); boundaryTraversal(root); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // JavaScript implementation of the approach /* A binary tree node has data, pointer to left child and a pointer to right child */ class Node { constructor(data) { this .left = null ; this .right = null ; this .data = data; } } /* Helper function that allocates a new node with the given data and null left and right pointers. */ function newNode(data) { let temp = new Node(data); return temp; } // Function to print the nodes of a complete // binary tree in boundary traversal order function boundaryTraversal(root) { if (root != null ) { // If there is only 1 node print it // and return if ((root.left == null ) && (root.right == null )) { document.write(root.data + "</br>" ); return ; } // List to store order of traversed // nodes let list = []; list.push(root); // Traverse left boundary without root // and last node let L = root.left; while (L.left != null ) { list.push(L); L = L.left; } // BFS designed to only include leaf nodes let q = []; q.push(root); while (q.length > 0) { let temp = q[0]; q.shift(); if ((temp.left == null ) && (temp.right == null )) { list.push(temp); } if (temp.left != null ) { q.push(temp.left); } if (temp.right != null ) { q.push(temp.right); } } // Traverse right boundary without root // and last node let list_r = []; let R = root.right; while (R.right != null ) { list_r.push(R); R = R.right; } // Reversing the order list_r.reverse(); // Concatenating the two lists for (let i = 0; i < list_r.length; i++) { list.push(list_r[i]); } // Printing the node's data from the list for (let i = 0; i < list.length; i++) { document.write(list[i].data + " " ); } document.write( "</br>" ); return ; } } // Root node of the tree let root = newNode(20); root.left = newNode(8); root.right = newNode(22); root.left.left = newNode(4); root.left.right = newNode(12); root.right.left = newNode(10); root.right.right = newNode(25); boundaryTraversal(root); </script> |
20 8 4 12 10 25 22
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!