Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIIncreasing permutation of first N natural numbers

Increasing permutation of first N natural numbers

Given a permutation {P1, P2, P3, ….. PN) of first N natural numbers. The task is to check if it is possible to make the permutation increasing by swapping any two numbers. If it is already in increasing order, do nothing. 
Examples: 
 

Input: a[] = {5, 2, 3, 4, 1} 
Output: Yes 
Swap 1 and 5
Input: a[] = {1, 2, 3, 4, 5} 
Output: Yes 
Already in increasing order
Input: a[] = {5, 2, 1, 4, 3} 
Output: No 
 

 

Approach: Let K be the number of positions i at which P1 ? i (1 based indexing). If K = 0, the answer is Yes as the permutation can be left as is. If K = 2, the answer is also Yes: swap the two misplaced elements. (Notice K = 1 is never possible as if any element is put in the wrong position, the element that was meant to be in that position must also be misplaced.). If K > 2 then the answer is No: a single swap can only affect two elements and can thus only correct at most two misplacements.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that returns true if it is
// possible to make the permutation
// increasing by swapping any two numbers
bool isPossible(int a[], int n)
{
    // To count misplaced elements
    int k = 0;
 
    // Count all misplaced elements
    for (int i = 0; i < n; i++) {
        if (a[i] != i + 1)
            k++;
    }
 
    // If possible
    if (k <= 2)
        return true;
 
    return false;
}
 
// Driver code
int main()
{
    int a[] = { 5, 2, 3, 4, 1 };
    int n = sizeof(a) / sizeof(a[0]);
 
    if (isPossible(a, n))
        cout << "Yes";
    else
        cout << "No";
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
     
// Function that returns true if it is
// possible to make the permutation
// increasing by swapping any two numbers
static boolean isPossible(int a[], int n)
{
    // To count misplaced elements
    int k = 0;
 
    // Count all misplaced elements
    for (int i = 0; i < n; i++)
    {
        if (a[i] != i + 1)
            k++;
    }
 
    // If possible
    if (k <= 2)
        return true;
 
    return false;
}
 
// Driver code
public static void main(String[] args)
{
    int a[] = { 5, 2, 3, 4, 1 };
    int n = a.length;
 
    if (isPossible(a, n))
        System.out.println("Yes");
    else
        System.out.println("No");
}
}
 
// This code is contributed by Code_Mech


Python3




# Python3 implementation of the approach
 
# Function that returns true if it is
# possible to make the permutation
# increasing by swapping any two numbers
def isPossible(a, n) :
 
    # To count misplaced elements
    k = 0;
 
    # Count all misplaced elements
    for i in range(n) :
        if (a[i] != i + 1) :
            k += 1;
 
    # If possible
    if (k <= 2) :
        return True;
 
    return False;
 
# Driver code
if __name__ == "__main__" :
 
    a = [5, 2, 3, 4, 1 ];
    n = len(a);
 
    if (isPossible(a, n)) :
        print("Yes");
    else :
        print("No");
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
     
class GFG
{
     
// Function that returns true if it is
// possible to make the permutation
// increasing by swapping any two numbers
static Boolean isPossible(int []a, int n)
{
    // To count misplaced elements
    int k = 0;
 
    // Count all misplaced elements
    for (int i = 0; i < n; i++)
    {
        if (a[i] != i + 1)
            k++;
    }
 
    // If possible
    if (k <= 2)
        return true;
 
    return false;
}
 
// Driver code
public static void Main(String[] args)
{
    int []a = { 5, 2, 3, 4, 1 };
    int n = a.Length;
 
    if (isPossible(a, n))
        Console.WriteLine("Yes");
    else
        Console.WriteLine("No");
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function that returns true if it is
// possible to make the permutation
// increasing by swapping any two numbers
function isPossible(a, n)
{
 
    // To count misplaced elements
    let k = 0;
 
    // Count all misplaced elements
    for (let i = 0; i < n; i++) {
        if (a[i] != i + 1)
            k++;
    }
 
    // If possible
    if (k <= 2)
        return true;
 
    return false;
}
 
// Driver code
    let a = [ 5, 2, 3, 4, 1 ];
    let n = a.length;
 
    if (isPossible(a, n))
        document.write("Yes");
    else
        document.write("No");
 
// This code is contributed by Manoj
</script>


Output: 

Yes

 

Time Complexity: O(n)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments