In-place has more than one definition. One strict definition is.
An in-place algorithm is an algorithm that does not need an extra space and produces an output in the same memory that contains the data by transforming the input ‘in-place’. However, a small constant extra space used for variables is allowed.
A more broad definition is,
In-place means that the algorithm does not use extra space for manipulating the input but may require a small though non-constant extra space for its operation. Usually, this space is O(log n), though sometimes anything in O(n) (Smaller than linear) is allowed.
A Not In-Place Implementation of reversing an array
Implementation:
C++
// An Not in-place C++ program to reverse an array #include <bits/stdc++.h> using namespace std; /* Function to reverse arr[] from start to end*/ void reverseArray( int arr[], int n) { // Create a copy array and store reversed // elements int rev[n]; for ( int i=0; i<n; i++) rev[n-i-1] = arr[i]; // Now copy reversed elements back to arr[] for ( int i=0; i<n; i++) arr[i] = rev[i]; } /* Utility function to print an array */ void printArray( int arr[], int size) { for ( int i = 0; i < size; i++) cout << arr[i] << " " ; cout << endl; } /* Driver function to test above functions */ int main() { int arr[] = {1, 2, 3, 4, 5, 6}; int n = sizeof (arr)/ sizeof (arr[0]); printArray(arr, n); reverseArray(arr, n); cout << "Reversed array is" << endl; printArray(arr, n); return 0; } |
Java
// An Not in-place Java program // to reverse an array import java.util.*; class GFG { /* Function to reverse arr[] from start to end*/ public static void reverseArray( int []arr, int n) { // Create a copy array // and store reversed // elements int []rev = new int [n]; for ( int i = 0 ; i < n; i++) rev[n - i - 1 ] = arr[i]; // Now copy reversed // elements back to arr[] for ( int i = 0 ; i < n; i++) arr[i] = rev[i]; } /* Utility function to print an array */ public static void printArray( int []arr, int size) { for ( int i = 0 ; i < size; i++) System.out.print(arr[i] + " " ); System.out.println( "" ); } // Driver code public static void main(String[] args) { int arr[] = { 1 , 2 , 3 , 4 , 5 , 6 }; int n = arr.length; printArray(arr, n); reverseArray(arr, n); System.out.println( "Reversed array is" ); printArray(arr, n); } } // This code is contributed // by Harshit Saini |
Python3
# An Not in-place Python program # to reverse an array ''' Function to reverse arr[] from start to end ''' def reverseArray(arr, n): # Create a copy array # and store reversed # elements rev = n * [ 0 ] for i in range ( 0 , n): rev[n - i - 1 ] = arr[i] # Now copy reversed # elements back to arr[] for i in range ( 0 , n): arr[i] = rev[i] # Driver code if __name__ = = "__main__" : arr = [ 1 , 2 , 3 , 4 , 5 , 6 ] n = len (arr) print ( * arr) reverseArray(arr, n); print ( "Reversed array is" ) print ( * arr) # This code is contributed # by Harshit Saini |
C#
// An Not in-place C# program // to reverse an array using System; class GFG { /* Function to reverse arr[] from start to end*/ public static void reverseArray( int [] arr, int n) { // Create a copy array // and store reversed // elements int [] rev = new int [n]; for ( int i = 0; i < n; i++) rev[n - i - 1] = arr[i]; // Now copy reversed // elements back to arr[] for ( int i = 0; i < n; i++) arr[i] = rev[i]; } /* Utility function to print an array */ public static void printArray( int [] arr, int size) { for ( int i = 0; i < size; i++) Console.Write(arr[i] + " " ); Console.Write( "\n" ); } // Driver code public static void Main() { int [] arr = {1, 2, 3, 4, 5, 6}; int n = arr.Length; printArray(arr, n); reverseArray(arr, n); Console.WriteLine( "Reversed array is" ); printArray(arr, n); } } // This code is contributed by Ita_c. |
Javascript
<script> // An Not in-place Javascript program // to reverse an array /* Function to reverse arr[] from start to end*/ function reverseArray(arr,n) { // Create a copy array // and store reversed // elements let rev = new Array(n); for (let i = 0; i < n; i++) rev[n - i - 1] = arr[i]; // Now copy reversed // elements back to arr[] for (let i = 0; i < n; i++) arr[i] = rev[i]; } /* Utility function to print an array */ function printArray(arr,size) { for (let i = 0; i < size; i++) document.write(arr[i] + " " ); document.write( "<br>" ); } // Driver code let arr=[1, 2, 3, 4, 5, 6]; let n = arr.length; printArray(arr, n); reverseArray(arr, n); document.write( "Reversed array is<br>" ); printArray(arr, n); // This code is contributed by rag2127 </script> |
1 2 3 4 5 6 Reversed array is 6 5 4 3 2 1
Time Complexity: O(n)
This needs O(n) extra space and is an example of a not-in-place algorithm.
An In-Place Implementation of Reversing an array.
Implementation:
C++
// An in-place C++ program to reverse an array #include <bits/stdc++.h> using namespace std; /* Function to reverse arr[] from start to end*/ void reverseArray( int arr[], int n) { for ( int i=0; i<n/2; i++) swap(arr[i], arr[n-i-1]); } /* Utility function to print an array */ void printArray( int arr[], int size) { for ( int i = 0; i < size; i++) cout << arr[i] << " " ; cout << endl; } /* Driver function to test above functions */ int main() { int arr[] = {1, 2, 3, 4, 5, 6}; int n = sizeof (arr)/ sizeof (arr[0]); printArray(arr, n); reverseArray(arr, n); cout << "Reversed array is" << endl; printArray(arr, n); return 0; } |
Java
// An in-place Java program // to reverse an array import java.util.*; class GFG { public static int __( int x, int y) { return x;} /* Function to reverse arr[] from start to end*/ public static void reverseArray( int []arr, int n) { for ( int i = 0 ; i < n / 2 ; i++) arr[i] = __(arr[n - i - 1 ], arr[n - i - 1 ] = arr[i]); } /* Utility function to print an array */ public static void printArray( int []arr, int size) { for ( int i = 0 ; i < size; i++) System.out.print(Integer.toString(arr[i]) + " " ); System.out.println( "" ); } // Driver code public static void main(String[] args) { int []arr = new int []{ 1 , 2 , 3 , 4 , 5 , 6 }; int n = arr.length; printArray(arr, n); reverseArray(arr, n); System.out.println( "Reversed array is" ); printArray(arr, n); } } // This code is contributed // by Harshit Saini |
Python3
# An in-place Python program # to reverse an array ''' Function to reverse arr[] from start to end''' def reverseArray(arr, n): for i in range ( 0 , int (n / 2 )): arr[i], arr[n - i - 1 ] = arr[n - i - 1 ], arr[i] # Driver code if __name__ = = "__main__" : arr = [ 1 , 2 , 3 , 4 , 5 , 6 ] n = len (arr) print ( * arr) reverseArray(arr, n) print ( "Reversed array is" ) print ( * arr) # This code is contributed # by Harshit Saini |
C#
// An in-place C# program // to reverse an array using System; class GFG { public static int __( int x, int y) { return x;} /* Function to reverse arr[] from start to end*/ public static void reverseArray( int []arr, int n) { for ( int i = 0; i < n / 2; i++) arr[i] = __(arr[n - i - 1], arr[n - i - 1] = arr[i]); } /* Utility function to print an array */ public static void printArray( int []arr, int size) { for ( int i = 0; i < size; i++) Console.Write(arr[i] + " " ); Console.WriteLine( "" ); } // Driver code public static void Main(String[] args) { int []arr = new int []{1, 2, 3, 4, 5, 6}; int n = arr.Length; printArray(arr, n); reverseArray(arr, n); Console.WriteLine( "Reversed array is" ); printArray(arr, n); } } /* This code is contributed by PrinciRaj1992 */ |
Javascript
<script> // An in-place Javascript program // to reverse an array function __(x,y) { return x; } /* Function to reverse arr[] from start to end*/ function reverseArray(arr,n) { for (let i = 0; i < n / 2; i++) arr[i] = __(arr[n - i - 1], arr[n - i - 1] = arr[i]); } /* Utility function to print an array */ function printArray(arr,size) { for (let i = 0; i < size; i++) document.write(arr[i] + " " ); document.write( "<br>" ); } // Driver code let arr=[1, 2, 3, 4, 5, 6]; let n = arr.length; printArray(arr, n); reverseArray(arr, n); document.write( "Reversed array is<br>" ); printArray(arr, n); // This code is contributed by avanitrachhadiya2155 </script> |
1 2 3 4 5 6 Reversed array is 6 5 4 3 2 1
Time Complexity: O(n)
This needs O(1) extra space for exchanging elements and is an example of an in-place algorithm.
Which Sorting Algorithms are In-Place and which are not?
In Place: Bubble sort, Selection Sort, Insertion Sort, Heapsort.
Not In-Place: Merge Sort. Note that merge sort requires O(n) extra space.
What about QuickSort? Why is it called In-Place?
QuickSort uses extra space for recursive function calls. It is called in-place according to broad definition as extra space required is not used to manipulate input, but only for recursive calls.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!