Prerequisite – Hashing Introduction, Implementing our Own Hash Table with Separate Chaining in Java
In Open Addressing, all elements are stored in the hash table itself. So at any point, size of table must be greater than or equal to total number of keys (Note that we can increase table size by copying old data if needed).
- Insert(k) – Keep probing until an empty slot is found. Once an empty slot is found, insert k.
- Search(k) – Keep probing until slot’s key doesn’t become equal to k or an empty slot is reached.
- Delete(k) – Delete operation is interesting. If we simply delete a key, then search may fail. So slots of deleted keys are marked specially as “deleted”.
Here, to mark a node deleted we have used dummy node with key and value -1.
Insert can insert an item in a deleted slot, but search doesn’t stop at a deleted slot.
The entire process ensures that for any key, we get an integer position within the size of the Hash Table to insert the corresponding value.
So the process is simple, user gives a (key, value) pair set as input and based on the value generated by hash function an index is generated to where the value corresponding to the particular key is stored. So whenever we need to fetch a value corresponding to a key that is just O(1).
Implementation:
CPP
#include <bits/stdc++.h> using namespace std; // template for generic type template < typename K, typename V> // Hashnode class class HashNode { public : V value; K key; // Constructor of hashnode HashNode(K key, V value) { this ->value = value; this ->key = key; } }; // template for generic type template < typename K, typename V> // Our own Hashmap class class HashMap { // hash element array HashNode<K, V>** arr; int capacity; // current size int size; // dummy node HashNode<K, V>* dummy; public : HashMap() { // Initial capacity of hash array capacity = 20; size = 0; arr = new HashNode<K, V>*[capacity]; // Initialise all elements of array as NULL for ( int i = 0; i < capacity; i++) arr[i] = NULL; // dummy node with value and key -1 dummy = new HashNode<K, V>(-1, -1); } // This implements hash function to find index // for a key int hashCode(K key) { return key % capacity; } // Function to add key value pair void insertNode(K key, V value) { HashNode<K, V>* temp = new HashNode<K, V>(key, value); // Apply hash function to find index for given key int hashIndex = hashCode(key); // find next free space while (arr[hashIndex] != NULL && arr[hashIndex]->key != key && arr[hashIndex]->key != -1) { hashIndex++; hashIndex %= capacity; } // if new node to be inserted // increase the current size if (arr[hashIndex] == NULL || arr[hashIndex]->key == -1) size++; arr[hashIndex] = temp; } // Function to delete a key value pair V deleteNode( int key) { // Apply hash function // to find index for given key int hashIndex = hashCode(key); // finding the node with given key while (arr[hashIndex] != NULL) { // if node found if (arr[hashIndex]->key == key) { HashNode<K, V>* temp = arr[hashIndex]; // Insert dummy node here for further use arr[hashIndex] = dummy; // Reduce size size--; return temp->value; } hashIndex++; hashIndex %= capacity; } // If not found return null return NULL; } // Function to search the value for a given key V get( int key) { // Apply hash function to find index for given key int hashIndex = hashCode(key); int counter = 0; // finding the node with given key while (arr[hashIndex] != NULL) { // int counter =0; // BUG! if (counter++ > capacity) // to avoid infinite loop return NULL; // if node found return its value if (arr[hashIndex]->key == key) return arr[hashIndex]->value; hashIndex++; hashIndex %= capacity; } // If not found return null return NULL; } // Return current size int sizeofMap() { return size; } // Return true if size is 0 bool isEmpty() { return size == 0; } // Function to display the stored key value pairs void display() { for ( int i = 0; i < capacity; i++) { if (arr[i] != NULL && arr[i]->key != -1) cout << "key = " << arr[i]->key << " value = " << arr[i]->value << endl; } } }; // Driver method to test map class int main() { HashMap< int , int >* h = new HashMap< int , int >; h->insertNode(1, 1); h->insertNode(2, 2); h->insertNode(2, 3); h->display(); cout << h->sizeofMap() << endl; cout << h->deleteNode(2) << endl; cout << h->sizeofMap() << endl; cout << h->isEmpty() << endl; cout << h->get(2); return 0; } |
Java
// Our own HashNode class class HashNode { int key; int value; public HashNode( int key, int value) { this .key = key; this .value = value; } } // Our own Hashmap class class HashMap { // hash element array int capacity; int size; HashNode[] arr; // dummy node HashNode dummy; public HashMap() { this .capacity = 20 ; this .size = 0 ; this .arr = new HashNode[ this .capacity]; // initialize with dummy node this .dummy = new HashNode(- 1 , - 1 ); } // This implements hash function to find index for a key public int hashCode( int key) { return key % this .capacity; } // Function to add key value pair public void insertNode( int key, int value) { HashNode temp = new HashNode(key, value); // Apply hash function to find index for given key int hashIndex = hashCode(key); // find next free space while ( this .arr[hashIndex] != null && this .arr[hashIndex].key != key && this .arr[hashIndex].key != - 1 ) { hashIndex++; hashIndex %= this .capacity; } // if new node to be inserted, increase the current size if ( this .arr[hashIndex] == null || this .arr[hashIndex].key == - 1 ) { this .size++; } this .arr[hashIndex] = temp; } // Function to delete a key value pair public int deleteNode( int key) { // Apply hash function to find index for given key int hashIndex = hashCode(key); // finding the node with given key while ( this .arr[hashIndex] != null ) { // if node found if ( this .arr[hashIndex].key == key) { HashNode temp = this .arr[hashIndex]; // Insert dummy node here for further use this .arr[hashIndex] = this .dummy; // Reduce size this .size--; return temp.value; } hashIndex++; hashIndex %= this .capacity; } // If not found return -1 return - 1 ; } // Function to search the value for a given key public int get( int key) { // Apply hash function to find index for given key int hashIndex = hashCode(key); int counter = 0 ; // finding the node with given key while ( this .arr[hashIndex] != null ) { // If counter is greater than capacity to avoid infinite loop if (counter > this .capacity) { return - 1 ; } // if node found return its value if ( this .arr[hashIndex].key == key) { return this .arr[hashIndex].value; } hashIndex++; hashIndex %= this .capacity; counter++; } // If not found return 0 return 0 ; } // Return current size public int sizeofMap() { return this .size; } // Return true if size is 0 public boolean isEmpty() { return this .size == 0 ; } // Function to display the stored key value pairs public void display() { for ( int i = 0 ; i < this .capacity; i++) { if ( this .arr[i] != null && this .arr[i].key != - 1 ) { System.out.println( "key = " + this .arr[i].key + " value = " + this .arr[i].value); } } } } public class Main { public static void main(String[] args) { HashMap h = new HashMap(); h.insertNode( 1 , 1 ); h.insertNode( 2 , 2 ); h.insertNode( 2 , 3 ); h.display(); System.out.println(h.sizeofMap()); System.out.println(h.deleteNode( 2 )); System.out.println(h.sizeofMap()); System.out.println(h.isEmpty()); System.out.println(h.get( 2 )); } } |
Python3
# Our own Hashnode class class HashNode: def __init__( self , key, value): self .key = key self .value = value # Our own Hashmap class class HashMap: # hash element array def __init__( self ): self .capacity = 20 self .size = 0 self .arr = [ None ] * self .capacity # dummy node self .dummy = HashNode( - 1 , - 1 ) # This implements hash function to find index for a key def hashCode( self , key): return key % self .capacity # Function to add key value pair def insertNode( self , key, value): temp = HashNode(key, value) # Apply hash function to find index for given key hashIndex = self .hashCode(key) # find next free space while self .arr[hashIndex] is not None and self .arr[hashIndex].key ! = key and self .arr[hashIndex].key ! = - 1 : hashIndex + = 1 hashIndex % = self .capacity # if new node to be inserted, increase the current size if self .arr[hashIndex] is None or self .arr[hashIndex].key = = - 1 : self .size + = 1 self .arr[hashIndex] = temp # Function to delete a key value pair def deleteNode( self , key): # Apply hash function to find index for given key hashIndex = self .hashCode(key) # finding the node with given key while self .arr[hashIndex] is not None : # if node found if self .arr[hashIndex].key = = key: temp = self .arr[hashIndex] # Insert dummy node here for further use self .arr[hashIndex] = self .dummy # Reduce size self .size - = 1 return temp.value hashIndex + = 1 hashIndex % = self .capacity # If not found return None return None # Function to search the value for a given key def get( self , key): # Apply hash function to find index for given key hashIndex = self .hashCode(key) counter = 0 # finding the node with given key while self .arr[hashIndex] is not None : # If counter is greater than capacity to avoid infinite loop if counter > self .capacity: return None # if node found return its value if self .arr[hashIndex].key = = key: return self .arr[hashIndex].value hashIndex + = 1 hashIndex % = self .capacity counter + = 1 # If not found return None return 0 # Return current size def sizeofMap( self ): return self .size # Return true if size is 0 def isEmpty( self ): return self .size = = 0 # Function to display the stored key value pairs def display( self ): for i in range ( self .capacity): if self .arr[i] is not None and self .arr[i].key ! = - 1 : print ( "key = " , self .arr[i].key, " value = " , self .arr[i].value) # Driver method to test map class if __name__ = = "__main__" : h = HashMap() h.insertNode( 1 , 1 ) h.insertNode( 2 , 2 ) h.insertNode( 2 , 3 ) h.display() print (h.sizeofMap()) print (h.deleteNode( 2 )) print (h.sizeofMap()) print (h.isEmpty()) print (h.get( 2 )) |
C#
using System; class HashNode { public int key; public int value; public HashNode next; public HashNode( int key, int value) { this .key = key; this .value = value; next = null ; } } class HashMap { private HashNode[] table; private int capacity; private int size; public HashMap( int capacity) { this .capacity = capacity; table = new HashNode[capacity]; size = 0; } // hash function to find index for a given key private int HashCode( int key) { return key % capacity; } // function to add key value pair public void InsertNode( int key, int value) { int hashIndex = HashCode(key); HashNode newNode = new HashNode(key, value); // if the key already exists, update the value if (table[hashIndex] != null ) { HashNode current = table[hashIndex]; while (current != null ) { if (current.key == key) { current.value = value; return ; } current = current.next; } } // if the key is new, add a new node to the table newNode.next = table[hashIndex]; table[hashIndex] = newNode; size++; } // function to delete a key value pair public int ? DeleteNode( int key) { int hashIndex = HashCode(key); if (table[hashIndex] != null ) { HashNode current = table[hashIndex]; HashNode previous = null ; while (current != null ) { if (current.key == key) { if (previous == null ) { table[hashIndex] = current.next; } else { previous.next = current.next; } size--; return current.value; } previous = current; current = current.next; } } return null ; } // function to get the value for a given key public int ? Get( int key) { int hashIndex = HashCode(key); if (table[hashIndex] != null ) { HashNode current = table[hashIndex]; while (current != null ) { if (current.key == key) { return current.value; } current = current.next; } } return 0; } // function to get the number of key value pairs in the // hashmap public int Size() { return size; } // function to check if the hashmap is empty public bool IsEmpty() { return size == 0; } // function to display the key value pairs in the // hashmap public void Display() { for ( int i = 0; i < capacity; i++) { if (table[i] != null ) { HashNode current = table[i]; while (current != null ) { Console.WriteLine( "key = " + current.key + " value = " + current.value); current = current.next; } } } } } class Program { static void Main( string [] args) { HashMap h = new HashMap(20); h.InsertNode(1, 1); h.InsertNode(2, 2); h.InsertNode(2, 3); h.Display(); Console.WriteLine(h.Size()); Console.WriteLine(h.DeleteNode(2)); Console.WriteLine(h.Size()); Console.WriteLine(h.IsEmpty()); Console.WriteLine(h.Get(2)); } } |
Javascript
// template for generic type class HashNode { constructor(key, value) { this .key = key; this .value = value; } } // template for generic type class HashMap { constructor() { this .capacity = 20; this .size = 0; this .arr = new Array( this .capacity); // Initialise all elements of array as NULL for (let i = 0; i < this .capacity; i++) { this .arr[i] = null ; } // dummy node with value and key -1 this .dummy = new HashNode(-1, -1); } // This implements hash function to find index for a key hashCode(key) { return key % this .capacity; } // Function to add key value pair insertNode(key, value) { const temp = new HashNode(key, value); // Apply hash function to find index for given key let hashIndex = this .hashCode(key); // find next free space while ( this .arr[hashIndex] !== null && this .arr[hashIndex].key !== key && this .arr[hashIndex].key !== -1 ) { hashIndex++; hashIndex %= this .capacity; } // if new node to be inserted // increase the current size if ( this .arr[hashIndex] === null || this .arr[hashIndex].key === -1 ) { this .size++; } this .arr[hashIndex] = temp; } // Function to delete a key value pair deleteNode(key) { // Apply hash function to find index for given key let hashIndex = this .hashCode(key); // finding the node with given key while ( this .arr[hashIndex] !== null ) { // if node found if ( this .arr[hashIndex].key === key) { const temp = this .arr[hashIndex]; // Insert dummy node here for further use this .arr[hashIndex] = this .dummy; // Reduce size this .size--; return temp.value; } hashIndex++; hashIndex %= this .capacity; } // If not found return null return null ; } // Function to search the value for a given key get(key) { // Apply hash function to find index for given key let hashIndex = this .hashCode(key); let counter = 0; // finding the node with given key while ( this .arr[hashIndex] !== null ) { if (counter++ > this .capacity) { // to avoid infinite loop return 0; } // if node found return its value if ( this .arr[hashIndex].key === key) { return this .arr[hashIndex].value; } hashIndex++; hashIndex %= this .capacity; } // If not found return null return 0; } // Return current size sizeofMap() { return this .size; } // Return true if size is 0 isEmpty() { return this .size === 0; } // Function to display the stored key value pairs display() { for (let i = 0; i < this .capacity; i++) { if ( this .arr[i] !== null && this .arr[i].key !== -1) { console.log(`key = ${ this .arr[i].key} value = ${ this .arr[i].value}`); } } } } // Driver method to test map class const h = new HashMap(); h.insertNode(1,1); h.insertNode(2,2); h.insertNode(2,3); h.display(); console.log(h.sizeofMap()); console.log(h.deleteNode(2)); console.log(h.sizeofMap()); console.log(h.isEmpty()); console.log(h.get(2)); |
key = 1 value = 1 key = 2 value = 3 2 3 1 0 0
Complexity analysis for Insertion:
- Time Complexity:
- Best Case: O(1)
- Worst Case: O(N). This happens when all elements have collided and we need to insert the last element by checking free space one by one.
- Average Case: O(1) for good hash function, O(N) for bad hash function
- Auxiliary Space: O(1)
Complexity analysis for Deletion:
- Time Complexity:
- Best Case: O(1)
- Worst Case: O(N)
- Average Case: O(1) for good hash function; O(N) for bad hash function
- Auxiliary Space: O(1)
Complexity analysis for Searching:
- Time Complexity:
- Best Case: O(1)
- Worst Case: O(N)
- Average Case: O(1) for good hash function; O(N) for bad hash function
- Auxiliary Space: O(1) for search operation
This article is contributed by Chhavi. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!