Pre-requisite: Linked List Data Structure
Like arrays, Linked List is a linear data structure. Unlike arrays, linked list elements are not stored at the contiguous location, the elements are linked using pointers as shown below.
In Java, LinkedList can be represented as a class and a Node as a separate class. The LinkedList class contains a reference of Node class type.
Java
class LinkedList { Node head; // head of list /* Linked list Node*/ static class Node { int data; Node next; // Constructor to create a new node // Next is by default initialized // as null Node( int d) { data = d; } } } |
Creation and Insertion:
In this article, insertion in the list is done at the end, that is the new node is added after the last node of the given Linked List. For example, if the given Linked List is 5->10->15->20->25 and 30 is to be inserted, then the Linked List becomes 5->10->15->20->25->30.
Since a Linked List is typically represented by the head pointer of it, it is required to traverse the list till the last node and then change the next to last node to the new node.
Implementation:
Java
import java.io.*; // Java program to implement // a Singly Linked List public class LinkedList { Node head; // head of list // Linked list Node. // This inner class is made static // so that main() can access it static class Node { int data; Node next; // Constructor Node( int d) { data = d; next = null ; } } // Method to insert a new node public static LinkedList insert(LinkedList list, int data) { // Create a new node with given data Node new_node = new Node(data); // If the Linked List is empty, // then make the new node as head if (list.head == null ) { list.head = new_node; } else { // Else traverse till the last node // and insert the new_node there Node last = list.head; while (last.next != null ) { last = last.next; } // Insert the new_node at last node last.next = new_node; } // Return the list by head return list; } // Method to print the LinkedList. public static void printList(LinkedList list) { Node currNode = list.head; System.out.print( "LinkedList: " ); // Traverse through the LinkedList while (currNode != null ) { // Print the data at current node System.out.print(currNode.data + " " ); // Go to next node currNode = currNode.next; } } // Driver code public static void main(String[] args) { /* Start with the empty list. */ LinkedList list = new LinkedList(); // // ******INSERTION****** // // Insert the values list = insert(list, 1 ); list = insert(list, 2 ); list = insert(list, 3 ); list = insert(list, 4 ); list = insert(list, 5 ); list = insert(list, 6 ); list = insert(list, 7 ); list = insert(list, 8 ); // Print the LinkedList printList(list); } } |
LinkedList: 1 2 3 4 5 6 7 8
Traversal: For traversal, below is a general-purpose function printList() that prints any given list by traversing the list from head node to the last.
Implementation:
Java
import java.io.*; // Java program to implement // a Singly Linked List public class LinkedList { Node head; // head of list // Linked list Node. // Node is a static nested class // so main() can access it static class Node { int data; Node next; // Constructor Node( int d) { data = d; next = null ; } } // Method to insert a new node public static LinkedList insert(LinkedList list, int data) { // Create a new node with given data Node new_node = new Node(data); new_node.next = null ; // If the Linked List is empty, // then make the new node as head if (list.head == null ) { list.head = new_node; } else { // Else traverse till the last node // and insert the new_node there Node last = list.head; while (last.next != null ) { last = last.next; } // Insert the new_node at last node last.next = new_node; } // Return the list by head return list; } // Method to print the LinkedList. public static void printList(LinkedList list) { Node currNode = list.head; System.out.print( "LinkedList: " ); // Traverse through the LinkedList while (currNode != null ) { // Print the data at current node System.out.print(currNode.data + " " ); // Go to next node currNode = currNode.next; } } // **************MAIN METHOD************** // method to create a Singly linked list with n nodes public static void main(String[] args) { /* Start with the empty list. */ LinkedList list = new LinkedList(); // // ******INSERTION****** // // Insert the values list = insert(list, 1 ); list = insert(list, 2 ); list = insert(list, 3 ); list = insert(list, 4 ); list = insert(list, 5 ); list = insert(list, 6 ); list = insert(list, 7 ); list = insert(list, 8 ); // Print the LinkedList printList(list); } } |
LinkedList: 1 2 3 4 5 6 7 8
Deletion By KEY:
The deletion process can be understood as follows:
To be done:
Given a ‘key’, delete the first occurrence of this key in the linked list.
How to do it:
To delete a node from the linked list, do following steps.
- Search the key for its first occurrence in the list
- Now, Any of the 3 conditions can be there:
- Case 1: The key is found at the head
- In this case, Change the head of the node to the next node of the current head.
- Free the memory of the replaced head node.
- Case 2: The key is found in the middle or last, except at the head
- In this case, Find the previous node of the node to be deleted.
- Change the next the previous node to the next node of the current node.
- Free the memory of the replaced node.
- Case 3: The key is not found in the list
- In this case, No operation needs to be done.
Implementation:
Java
import java.io.*; // Java program to implement // a Singly Linked List public class LinkedList { Node head; // head of list // Linked list Node. // Node is a static nested class // so main() can access it static class Node { int data; Node next; // Constructor Node( int d) { data = d; next = null ; } } // Method to insert a new node public static LinkedList insert(LinkedList list, int data) { // Create a new node with given data Node new_node = new Node(data); new_node.next = null ; // If the Linked List is empty, // then make the new node as head if (list.head == null ) { list.head = new_node; } else { // Else traverse till the last node // and insert the new_node there Node last = list.head; while (last.next != null ) { last = last.next; } // Insert the new_node at last node last.next = new_node; } // Return the list by head return list; } // Method to print the LinkedList. public static void printList(LinkedList list) { Node currNode = list.head; System.out.print( "LinkedList: " ); // Traverse through the LinkedList while (currNode != null ) { // Print the data at current node System.out.print(currNode.data + " " ); // Go to next node currNode = currNode.next; } System.out.println(); } // **************DELETION BY KEY************** // Method to delete a node in the LinkedList by KEY public static LinkedList deleteByKey(LinkedList list, int key) { // Store head node Node currNode = list.head, prev = null ; // // CASE 1: // If head node itself holds the key to be deleted if (currNode != null && currNode.data == key) { list.head = currNode.next; // Changed head // Display the message System.out.println(key + " found and deleted" ); // Return the updated List return list; } // // CASE 2: // If the key is somewhere other than at head // // Search for the key to be deleted, // keep track of the previous node // as it is needed to change currNode.next while (currNode != null && currNode.data != key) { // If currNode does not hold key // continue to next node prev = currNode; currNode = currNode.next; } // If the key was present, it should be at currNode // Therefore the currNode shall not be null if (currNode != null ) { // Since the key is at currNode // Unlink currNode from linked list prev.next = currNode.next; // Display the message System.out.println(key + " found and deleted" ); } // // CASE 3: The key is not present // // If key was not present in linked list // currNode should be null if (currNode == null ) { // Display the message System.out.println(key + " not found" ); } // return the List return list; } // **************MAIN METHOD************** // method to create a Singly linked list with n nodes public static void main(String[] args) { /* Start with the empty list. */ LinkedList list = new LinkedList(); // // ******INSERTION****** // // Insert the values list = insert(list, 1 ); list = insert(list, 2 ); list = insert(list, 3 ); list = insert(list, 4 ); list = insert(list, 5 ); list = insert(list, 6 ); list = insert(list, 7 ); list = insert(list, 8 ); // Print the LinkedList printList(list); // // ******DELETION BY KEY****** // // Delete node with value 1 // In this case the key is ***at head*** deleteByKey(list, 1 ); // Print the LinkedList printList(list); // Delete node with value 4 // In this case the key is present ***in the // middle*** deleteByKey(list, 4 ); // Print the LinkedList printList(list); // Delete node with value 10 // In this case the key is ***not present*** deleteByKey(list, 10 ); // Print the LinkedList printList(list); } } |
LinkedList: 1 2 3 4 5 6 7 8 1 found and deleted LinkedList: 2 3 4 5 6 7 8 4 found and deleted LinkedList: 2 3 5 6 7 8 10 not found LinkedList: 2 3 5 6 7 8
Deletion At Position:
This deletion process can be understood as follows:
To be done:
Given a ‘position’, delete the node at this position from the linked list.
How to do it:
The steps to do it are as follows:
- Traverse the list by counting the index of the nodes
- For each index, match the index to be same as position
- Now, Any of the 3 conditions can be there:
- Case 1: The position is 0, i.e. the head is to be deleted
- In this case, Change the head of the node to the next node of current head.
- Free the memory of replaced head node.
- Case 2: The position is greater than 0 but less than the size of the list, i.e. in the middle or last, except at head
- In this case, Find previous node of the node to be deleted.
- Change the next of previous node to the next node of current node.
- Free the memory of replaced node.
- Case 3: The position is greater than the size of the list, i.e. position not found in the list
- In this case, No operation needs to be done.
Implementation:
Java
import java.io.*; // Java program to implement // a Singly Linked List public class LinkedList { Node head; // head of list // Linked list Node. // Node is a static nested class // so main() can access it static class Node { int data; Node next; // Constructor Node( int d) { data = d; next = null ; } } // Method to insert a new node public static LinkedList insert(LinkedList list, int data) { // Create a new node with given data Node new_node = new Node(data); new_node.next = null ; // If the Linked List is empty, // then make the new node as head if (list.head == null ) { list.head = new_node; } else { // Else traverse till the last node // and insert the new_node there Node last = list.head; while (last.next != null ) { last = last.next; } // Insert the new_node at last node last.next = new_node; } // Return the list by head return list; } // Method to print the LinkedList. public static void printList(LinkedList list) { Node currNode = list.head; System.out.print( "LinkedList: " ); // Traverse through the LinkedList while (currNode != null ) { // Print the data at current node System.out.print(currNode.data + " " ); // Go to next node currNode = currNode.next; } System.out.println(); } // Method to delete a node in the LinkedList by POSITION public static LinkedList deleteAtPosition(LinkedList list, int index) { // Store head node Node currNode = list.head, prev = null ; // // CASE 1: // If index is 0, then head node itself is to be // deleted if (index == 0 && currNode != null ) { list.head = currNode.next; // Changed head // Display the message System.out.println( index + " position element deleted" ); // Return the updated List return list; } // // CASE 2: // If the index is greater than 0 but less than the // size of LinkedList // // The counter int counter = 0 ; // Count for the index to be deleted, // keep track of the previous node // as it is needed to change currNode.next while (currNode != null ) { if (counter == index) { // Since the currNode is the required // position Unlink currNode from linked list prev.next = currNode.next; // Display the message System.out.println( index + " position element deleted" ); break ; } else { // If current position is not the index // continue to next node prev = currNode; currNode = currNode.next; counter++; } } // If the position element was found, it should be // at currNode Therefore the currNode shall not be // null // // CASE 3: The index is greater than the size of the // LinkedList // // In this case, the currNode should be null if (currNode == null ) { // Display the message System.out.println( index + " position element not found" ); } // return the List return list; } // **************MAIN METHOD************** // method to create a Singly linked list with n nodes public static void main(String[] args) { /* Start with the empty list. */ LinkedList list = new LinkedList(); // // ******INSERTION****** // // Insert the values list = insert(list, 1 ); list = insert(list, 2 ); list = insert(list, 3 ); list = insert(list, 4 ); list = insert(list, 5 ); list = insert(list, 6 ); list = insert(list, 7 ); list = insert(list, 8 ); // Print the LinkedList printList(list); // // ******DELETION AT POSITION****** // // Delete node at position 0 // In this case the key is ***at head*** deleteAtPosition(list, 0 ); // Print the LinkedList printList(list); // Delete node at position 2 // In this case the key is present ***in the // middle*** deleteAtPosition(list, 2 ); // Print the LinkedList printList(list); // Delete node at position 10 // In this case the key is ***not present*** deleteAtPosition(list, 10 ); // Print the LinkedList printList(list); } } |
LinkedList: 1 2 3 4 5 6 7 8 0 position element deleted LinkedList: 2 3 4 5 6 7 8 2 position element deleted LinkedList: 2 3 5 6 7 8 10 position element not found LinkedList: 2 3 5 6 7 8
All Operations:
Below is the complete program that applies each operation together:
Java
import java.io.*; // Java program to implement // a Singly Linked List public class LinkedList { Node head; // head of list // Linked list Node. // Node is a static nested class // so main() can access it static class Node { int data; Node next; // Constructor Node( int d) { data = d; next = null ; } } // **************INSERTION************** // Method to insert a new node public static LinkedList insert(LinkedList list, int data) { // Create a new node with given data Node new_node = new Node(data); new_node.next = null ; // If the Linked List is empty, // then make the new node as head if (list.head == null ) { list.head = new_node; } else { // Else traverse till the last node // and insert the new_node there Node last = list.head; while (last.next != null ) { last = last.next; } // Insert the new_node at last node last.next = new_node; } // Return the list by head return list; } // **************TRAVERSAL************** // Method to print the LinkedList. public static void printList(LinkedList list) { Node currNode = list.head; System.out.print( "\nLinkedList: " ); // Traverse through the LinkedList while (currNode != null ) { // Print the data at current node System.out.print(currNode.data + " " ); // Go to next node currNode = currNode.next; } System.out.println( "\n" ); } // **************DELETION BY KEY************** // Method to delete a node in the LinkedList by KEY public static LinkedList deleteByKey(LinkedList list, int key) { // Store head node Node currNode = list.head, prev = null ; // // CASE 1: // If head node itself holds the key to be deleted if (currNode != null && currNode.data == key) { list.head = currNode.next; // Changed head // Display the message System.out.println(key + " found and deleted" ); // Return the updated List return list; } // // CASE 2: // If the key is somewhere other than at head // // Search for the key to be deleted, // keep track of the previous node // as it is needed to change currNode.next while (currNode != null && currNode.data != key) { // If currNode does not hold key // continue to next node prev = currNode; currNode = currNode.next; } // If the key was present, it should be at currNode // Therefore the currNode shall not be null if (currNode != null ) { // Since the key is at currNode // Unlink currNode from linked list prev.next = currNode.next; // Display the message System.out.println(key + " found and deleted" ); } // // CASE 3: The key is not present // // If key was not present in linked list // currNode should be null if (currNode == null ) { // Display the message System.out.println(key + " not found" ); } // return the List return list; } // **************DELETION AT A POSITION************** // Method to delete a node in the LinkedList by POSITION public static LinkedList deleteAtPosition(LinkedList list, int index) { // Store head node Node currNode = list.head, prev = null ; // // CASE 1: // If index is 0, then head node itself is to be // deleted if (index == 0 && currNode != null ) { list.head = currNode.next; // Changed head // Display the message System.out.println( index + " position element deleted" ); // Return the updated List return list; } // // CASE 2: // If the index is greater than 0 but less than the // size of LinkedList // // The counter int counter = 0 ; // Count for the index to be deleted, // keep track of the previous node // as it is needed to change currNode.next while (currNode != null ) { if (counter == index) { // Since the currNode is the required // position Unlink currNode from linked list prev.next = currNode.next; // Display the message System.out.println( index + " position element deleted" ); break ; } else { // If current position is not the index // continue to next node prev = currNode; currNode = currNode.next; counter++; } } // If the position element was found, it should be // at currNode Therefore the currNode shall not be // null // // CASE 3: The index is greater than the size of the // LinkedList // // In this case, the currNode should be null if (currNode == null ) { // Display the message System.out.println( index + " position element not found" ); } // return the List return list; } // **************MAIN METHOD************** // method to create a Singly linked list with n nodes public static void main(String[] args) { /* Start with the empty list. */ LinkedList list = new LinkedList(); // // ******INSERTION****** // // Insert the values list = insert(list, 1 ); list = insert(list, 2 ); list = insert(list, 3 ); list = insert(list, 4 ); list = insert(list, 5 ); list = insert(list, 6 ); list = insert(list, 7 ); list = insert(list, 8 ); // Print the LinkedList printList(list); // // ******DELETION BY KEY****** // // Delete node with value 1 // In this case the key is ***at head*** deleteByKey(list, 1 ); // Print the LinkedList printList(list); // Delete node with value 4 // In this case the key is present ***in the // middle*** deleteByKey(list, 4 ); // Print the LinkedList printList(list); // Delete node with value 10 // In this case the key is ***not present*** deleteByKey(list, 10 ); // Print the LinkedList printList(list); // // ******DELETION AT POSITION****** // // Delete node at position 0 // In this case the key is ***at head*** deleteAtPosition(list, 0 ); // Print the LinkedList printList(list); // Delete node at position 2 // In this case the key is present ***in the // middle*** deleteAtPosition(list, 2 ); // Print the LinkedList printList(list); // Delete node at position 10 // In this case the key is ***not present*** deleteAtPosition(list, 10 ); // Print the LinkedList printList(list); } } |
LinkedList: 1 2 3 4 5 6 7 8 1 found and deleted LinkedList: 2 3 4 5 6 7 8 4 found and deleted LinkedList: 2 3 5 6 7 8 10 not found LinkedList: 2 3 5 6 7 8 0 position element deleted LinkedList: 3 5 6 7 8 2 position element deleted LinkedList: 3 5 7 8 10 position element not found LinkedList: 3 5 7 8