Saturday, December 28, 2024
Google search engine
HomeLanguagesImplementation of Erdos-Renyi Model on Social Networks

Implementation of Erdos-Renyi Model on Social Networks

Prerequisite: Introduction to Social Networks, Erdos-Renyi Model

Erdos Renyi model is used to create random networks or graphs on social networking. In the Erdos Reny model, each edge has a fixed probability of being present and being absent independent of the edges in a network.

Implementing a Social Network using the Erdos-Renyi model:

Step 1) Import necessary modules like networkx, matplotlib.pyplot, and random module.

Python3




# Import Required modules
import networkx as nx
import matplotlib.pyplot as plt
import random


 

Step 2) Create a distribution graph for the model.

Python3




# Distribution graph for Erdos_Renyi model
def distribution_graph(g):
    print(nx.degree(g))
    all_node_degree = list(dict((nx.degree(g))).values())
  
    unique_degree = list(set(all_node_degree))
    unique_degree.sort()
    nodes_with_degree = []
    for i in unique_degree:
        nodes_with_degree.append(all_node_degree.count(i))
  
    plt.plot(unique_degree, nodes_with_degree)
    plt.xlabel("Degrees")
    plt.ylabel("No. of nodes")
    plt.title("Degree distribution")
    plt.show()


 

Step 3) Take N i.e number of nodes from the user.

Python3




# Take N number of nodes as input
print("Enter number of nodes")
N = int(input())


 

Step 4) Now take P i.e the probability from the user for edges.

Python3




# Take P probability value for edges
print("Enter value of probability of every node")
P = float(input())


 

Step 5) Create a graph with N nodes without any edges.

Python3




# Create an empty graph object
g = nx.Graph()
  
# Adding nodes
g.add_nodes_from(range(1, N + 1))


 

Step 6) Add the edges to the graph randomly, take a pair of nodes, and get a random number R. If R<P (probability), add an edge. Repeat steps 5 and 6 for all possible pairs of nodes and then display the whole social network (graph) formed.

Python3




# Add edges to the graph randomly.
for i in g.nodes():
    for j in g.nodes():
        if (i < j):
              
            # Take random number R.
            R = random.random()
              
            # Check if R<P add the edge 
            # to the graph else ignore.
            if (R < P):
                g.add_edge(i, j)
    pos = nx.circular_layout(g)
      
    # Display the social network 
    nx.draw(g, pos, with_labels=1)
    plt.show()


 

Step 7) Display the connecting nodes.

Python3




# Display connection between nodes    
distribution_graph(g)


Below is the complete program of the above step-wise approach:

Python3




# Implementation of Erdos-Renyi Model on a Social Network
  
  
# Import Required modules
import networkx as nx
import matplotlib.pyplot as plt
import random
  
  
# Distribution graph for Erdos_Renyi model
def distribution_graph(g):
    print(nx.degree(g))
    all_node_degree = list(dict((nx.degree(g))).values())
  
    unique_degree = list(set(all_node_degree))
    unique_degree.sort()
    nodes_with_degree = []
    for i in unique_degree:
        nodes_with_degree.append(all_node_degree.count(i))
  
    plt.plot(unique_degree, nodes_with_degree)
    plt.xlabel("Degrees")
    plt.ylabel("No. of nodes")
    plt.title("Degree distribution")
    plt.show()
  
          
# Take N number of nodes from user
print("Enter number of nodes")
N = int(input())
  
  
# Take P probability value for edges
print("Enter value of probability of every node")
P = float(input())
  
  
# Create an empty graph object
g = nx.Graph()
  
  
# Adding nodes
g.add_nodes_from(range(1, N + 1))
  
  
# Add edges to the graph randomly.
for i in g.nodes():
    for j in g.nodes():
        if (i < j):
              
            # Take random number R.
            R = random.random()
              
            # Check if R<P add the edge to the graph else ignore.
            if (R < P):
                g.add_edge(i, j)
    pos = nx.circular_layout(g)
      
    # Display the social network 
    nx.draw(g, pos, with_labels=1)
    plt.show()
  
# Display connection between nodes    
distribution_graph(g)


Output:

Enter number of nodes
10
Enter value of probability of every node
0.4
[(1, 5), (2, 3), (3, 4), (4, 2), (5, 3), (6, 5), (7, 4), (8, 2), (9, 2), (10, 2)]

Adding edges randomly in a graph

Degree Distribution Graph of the implementation of Erdos-Renyi model on the above program:

 

RELATED ARTICLES

Most Popular

Recent Comments