Wednesday, December 25, 2024
Google search engine
HomeLanguagesImplement sigmoid function using Numpy

Implement sigmoid function using Numpy

With the help of Sigmoid activation function, we are able to reduce the loss during the time of training because it eliminates the gradient problem in machine learning model while training.




# Import matplotlib, numpy and math
import matplotlib.pyplot as plt
import numpy as np
import math
  
x = np.linspace(-10, 10, 100)
z = 1/(1 + np.exp(-x))
  
plt.plot(x, z)
plt.xlabel("x")
plt.ylabel("Sigmoid(X)")
  
plt.show()


Output :

Example #1 :




# Import matplotlib, numpy and math
import matplotlib.pyplot as plt
import numpy as np
import math
  
x = np.linspace(-100, 100, 200)
z = 1/(1 + np.exp(-x))
  
plt.plot(x, z)
plt.xlabel("x")
plt.ylabel("Sigmoid(X)")
  
plt.show()


Output :

RELATED ARTICLES

Most Popular

Recent Comments