Sunday, October 5, 2025
HomeLanguagesImplement sigmoid function using Numpy

Implement sigmoid function using Numpy

With the help of Sigmoid activation function, we are able to reduce the loss during the time of training because it eliminates the gradient problem in machine learning model while training.




# Import matplotlib, numpy and math
import matplotlib.pyplot as plt
import numpy as np
import math
  
x = np.linspace(-10, 10, 100)
z = 1/(1 + np.exp(-x))
  
plt.plot(x, z)
plt.xlabel("x")
plt.ylabel("Sigmoid(X)")
  
plt.show()


Output :

Example #1 :




# Import matplotlib, numpy and math
import matplotlib.pyplot as plt
import numpy as np
import math
  
x = np.linspace(-100, 100, 200)
z = 1/(1 + np.exp(-x))
  
plt.plot(x, z)
plt.xlabel("x")
plt.ylabel("Sigmoid(X)")
  
plt.show()


Output :

RELATED ARTICLES

Most Popular

Dominic
32337 POSTS0 COMMENTS
Milvus
86 POSTS0 COMMENTS
Nango Kala
6706 POSTS0 COMMENTS
Nicole Veronica
11871 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11934 POSTS0 COMMENTS
Shaida Kate Naidoo
6821 POSTS0 COMMENTS
Ted Musemwa
7087 POSTS0 COMMENTS
Thapelo Manthata
6779 POSTS0 COMMENTS
Umr Jansen
6778 POSTS0 COMMENTS