Given an element x, task is to find the value of its immediate smaller element.
Example :
Input : x = 30 (for above tree) Output : Immediate smaller element is 25
Explanation : Elements 2, 15, 20 and 25 are smaller than x i.e, 30, but 25 is the immediate smaller element and hence the answer.
Approach :
- Let res be the resultant node.
- Initialize the resultant Node as NULL.
- For every Node, check if data of root is greater than res, but less than x. if yes, update res.
- Recursively do the same for all nodes of the given Generic Tree.
- Return res, and res->key would be the immediate smaller element.
Below is the implementation of above approach :
C++
// C++ program to find immediate Smaller// Element of a given element in a n-ary tree.#include <bits/stdc++.h>using namespace std;// class of a node of an n-ary treeclass Node {public: int key; vector<Node*> child; // constructor Node(int data) { key = data; }};// Function to find immediate Smaller Element// of a given number xvoid immediateSmallerElementUtil(Node* root, int x, Node** res){ if (root == NULL) return; // if root is greater than res, but less // than x, then update res if (root->key < x) if (!(*res) || (*res)->key < root->key) *res = root; // Updating res // Number of children of root int numChildren = root->child.size(); // Recursive calling for every child for (int i = 0; i < numChildren; i++) immediateSmallerElementUtil(root->child[i], x, res); return;}// Function to return immediate Smaller// Element of x in treeNode* immediateSmallerElement(Node* root, int x){ // resultant node Node* res = NULL; // calling helper function and using // pass by reference immediateSmallerElementUtil(root, x, &res); return res;}// Driver programint main(){ // Creating a generic tree Node* root = new Node(20); (root->child).push_back(new Node(2)); (root->child).push_back(new Node(34)); (root->child).push_back(new Node(50)); (root->child).push_back(new Node(60)); (root->child).push_back(new Node(70)); (root->child[0]->child).push_back(new Node(15)); (root->child[0]->child).push_back(new Node(20)); (root->child[1]->child).push_back(new Node(30)); (root->child[2]->child).push_back(new Node(40)); (root->child[2]->child).push_back(new Node(100)); (root->child[2]->child).push_back(new Node(20)); (root->child[0]->child[1]->child).push_back(new Node(25)); (root->child[0]->child[1]->child).push_back(new Node(50)); int x = 30; cout << "Immediate smaller element of " << x << " is "; cout << immediateSmallerElement(root, x)->key << endl; return 0;} |
Python3
# Python code for the above approachclass Node: def __init__(self, key): self.key = key self.child = []# Function to find immediate Smaller Element of a given number xdef immediateSmallerElementUtil(root, x, res): if root is None: return # if root is greater than res, but less than x, then update res if root.key < x: if res[0] is None or res[0].key < root.key: res[0] = root # Recursive calling for every child for i in range(len(root.child)): immediateSmallerElementUtil(root.child[i], x, res) return# Function to return immediate Smaller Element of x in treedef immediateSmallerElement(root, x): # resultant node res = [None] immediateSmallerElementUtil(root, x, res) return res[0]if __name__ == "__main__": # Creating a generic tree root = Node(20) root.child.append(Node(2)) root.child.append(Node(34)) root.child.append(Node(50)) root.child.append(Node(60)) root.child.append(Node(70)) root.child[0].child.append(Node(15)) root.child[0].child.append(Node(20)) root.child[1].child.append(Node(30)) root.child[2].child.append(Node(40)) root.child[2].child.append(Node(100)) root.child[2].child.append(Node(20)) root.child[0].child[1].child.append(Node(25)) root.child[0].child[1].child.append(Node(50)) x = 30 print("Immediate smaller element of", x, "is", immediateSmallerElement(root, x).key) # This code is contributed by lokeshpotta20. |
Java
import java.util.*;// class of a node of an n-ary treeclass Node { int key; List<Node> child; // constructor Node(int data) { key = data; child = new ArrayList<>(); }}// Main classclass Main { // Function to find immediate smaller element // of a given number x static void immediateSmallerElementUtil(Node root, int x, Node[] res) { if (root == null) return; // if root is greater than res, but less // than x, then update res if (root.key < x) if (res[0] == null || res[0].key < root.key) res[0] = root; // Updating res // Number of children of root int numChildren = root.child.size(); // Recursive calling for every child for (int i = 0; i < numChildren; i++) immediateSmallerElementUtil(root.child.get(i), x, res); } // Function to return immediate smaller // element of x in tree static Node immediateSmallerElement(Node root, int x) { // resultant node Node[] res = new Node[1]; // calling helper function and using // pass by reference immediateSmallerElementUtil(root, x, res); return res[0]; } // Driver code public static void main(String[] args) { // Creating a generic tree Node root = new Node(20); root.child.add(new Node(2)); root.child.add(new Node(34)); root.child.add(new Node(50)); root.child.add(new Node(60)); root.child.add(new Node(70)); root.child.get(0).child.add(new Node(15)); root.child.get(0).child.add(new Node(20)); root.child.get(1).child.add(new Node(30)); root.child.get(2).child.add(new Node(40)); root.child.get(2).child.add(new Node(100)); root.child.get(2).child.add(new Node(20)); root.child.get(0).child.get(1).child.add(new Node(25)); root.child.get(0).child.get(1).child.add(new Node(50)); int x = 30; System.out.print("Immediate smaller element of " + x + " is "); System.out.println(immediateSmallerElement(root, x).key); }} |
C#
// C# program for the above approachusing System;using System.Collections.Generic;// class of a node of an n-ary treeclass Node { public int key; public List<Node> child; // constructor public Node(int data) { key = data; child = new List<Node>(); }}class GFG { // Function to find immediate smaller element // of a given number x static void immediateSmallerElementUtil(Node root, int x, Node[] res) { if (root == null) return; // if root is greater than res, but less // than x, then update res if (root.key < x) { if (res[0] == null || res[0].key < root.key) { res[0] = root; } } // Number of children of root int numChildren = root.child.Count; // Recursive calling for every child for (int i = 0; i < numChildren; i++) { immediateSmallerElementUtil(root.child[i], x, res); } } // Function to return immediate smaller // element of x in tree static Node immediateSmallerElement(Node root, int x) { Node[] res = new Node[1]; // calling helper function and using // pass by reference immediateSmallerElementUtil(root, x, res); return res[0]; } // Driver Code public static void Main() { Node root = new Node(20); root.child.Add(new Node(2)); root.child.Add(new Node(34)); root.child.Add(new Node(50)); root.child.Add(new Node(60)); root.child.Add(new Node(70)); root.child[0].child.Add(new Node(15)); root.child[0].child.Add(new Node(20)); root.child[1].child.Add(new Node(30)); root.child[2].child.Add(new Node(40)); root.child[2].child.Add(new Node(100)); root.child[2].child.Add(new Node(20)); root.child[0].child[1].child.Add(new Node(25)); root.child[0].child[1].child.Add(new Node(50)); int x = 30; Console.Write("Immediate smaller element of " + x + " is "); Console.WriteLine(immediateSmallerElement(root, x).key); }}// This code is contributed by codebraxnzt |
Javascript
class Node { constructor(key) { this.key = key; this.child = []; }}// Function to find immediate Smaller Element of a given number xfunction immediateSmallerElementUtil(root, x, res) { if (root == null) { return; } // if root is greater than res, but less than x, then update res if (root.key < x) { if (res[0] == null || res[0].key < root.key) { res[0] = root; } } // Recursive calling for every child for (let i = 0; i < root.child.length; i++) { immediateSmallerElementUtil(root.child[i], x, res); } return;}// Function to return immediate Smaller Element of x in treefunction immediateSmallerElement(root, x) { // resultant node let res = [null]; immediateSmallerElementUtil(root, x, res); return res[0];}// Creating a generic treelet root = new Node(20);root.child.push(new Node(2));root.child.push(new Node(34));root.child.push(new Node(50));root.child.push(new Node(60));root.child.push(new Node(70));root.child[0].child.push(new Node(15));root.child[0].child.push(new Node(20));root.child[1].child.push(new Node(30));root.child[2].child.push(new Node(40));root.child[2].child.push(new Node(100));root.child[2].child.push(new Node(20));root.child[0].child[1].child.push(new Node(25));root.child[0].child[1].child.push(new Node(50));let x = 30;console.log("Immediate smaller element of", x, "is", immediateSmallerElement(root, x).key); |
Immediate smaller element of 30 is 25
Complexity Analysis:
- Time Complexity : O(N), where N is the number of nodes in N-ary Tree.
- Auxiliary Space : O(N), for recursive call(worst case when a node has N number of childs)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

