Friday, November 1, 2024
Google search engine
HomeLanguagesImage classification using CIFAR-10 and CIFAR-100 Dataset in TensorFlow

Image classification using CIFAR-10 and CIFAR-100 Dataset in TensorFlow

CIFAR10 and CIFAR100 are some of the famous benchmark datasets which are used to train CNN for the computer vision task. 

In this article we are supposed to perform image classification on both of these datasets CIFAR10 as well as CIFAR100 so, we will be using Transfer learning here. 

But how? First, we will build a custom CNN model and train it on our CIFAR100 data. And then we will leverage the trained weights of the Convolutional layers to build a classification model for the CIFAR10 dataset.

Importing Libraries

We will be requiring the following libraries : 

Python3




import tensorflow as tf
from tensorflow import keras
from keras import layers
  
import numpy as np
import matplotlib.pyplot as plt
  
import warnings
warnings.filterwarnings('ignore')


Importing Dataset

Now let’s load the CIFAR100 dataset first by using the TensorFlow API. The data fetched is already divided into training and validation datasets.

Python3




# Load in the data
cifar100 = tf.keras.datasets.cifar100
  
# Distribute it to train and test set
(x_train, y_train), (x_val, y_val) = cifar100.load_data()
print(x_train.shape, y_train.shape, x_val.shape, y_val.shape)


Output:

Downloading data from https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz
169001437/169001437 [==============================] - 13s 0us/step
(50000, 32, 32, 3) (50000, 1) (10000, 32, 32, 3) (10000, 1)

This means that we have 50,000 RGB format images of sizes (32, and 32) in the training data. And around 10,000 images in the validation dataset.

Data Visualization

Here in this step we will visualize the dataset, it will further help us to make a better model.

Python3




def show_samples(data, labels):
    plt.subplots(figsize=(10, 10))
    for i in range(12):
        plt.subplot(3, 4, i+1)
        k = np.random.randint(0, data.shape[0])
        plt.title(labels[k])
        plt.imshow(data[k])
    plt.tight_layout()
    plt.show()
  
  
show_samples(x_train, y_train)


Output:

Image classification using CIFAR-10 and CIFAR-100 Dataset in TensorFlow

 

Due to the very small size of the images, their content is not that clear. To know which number represent which class one can refer to various sources available online.

Data Splitting

We need to split the data into training and validation.

Python3




y_train = tf.one_hot(y_train,
                     depth=y_train.max() + 1,
                     dtype=tf.float64)
y_val = tf.one_hot(y_val,
                   depth=y_val.max() + 1,
                   dtype=tf.float64)
  
y_train = tf.squeeze(y_train)
y_val = tf.squeeze(y_val)


Model Architecture

Now let’s define the architecture of the model we will use as our CNN to classify between these 100 classes.

Python3




model = tf.keras.models.Sequential([
    layers.Conv2D(16, (3, 3), activation='relu',
                  input_shape=(32, 32, 3), padding='same'),
    layers.Conv2D(32, (3, 3),
                  activation='relu',
                  padding='same'),
    layers.Conv2D(64, (3, 3),
                  activation='relu',
                  padding='same'),
    layers.MaxPooling2D(2, 2),
    layers.Conv2D(128, (3, 3),
                  activation='relu',
                  padding='same'),
  
  
    layers.Flatten(),
    layers.Dense(256, activation='relu'),
    layers.BatchNormalization(),
    layers.Dense(256, activation='relu'),
    layers.Dropout(0.3),
    layers.BatchNormalization(),
    layers.Dense(100, activation='softmax')
])
  
model.compile(
    loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True),
    optimizer='adam',
    metrics=['AUC', 'accuracy']
)


What are the changes made to the images while moving deeper into a network that can be visualized by using the model summary? It also shows the number of parameters that will be trained in this model.

Python3




model.summary()


Output:

Image classification using CIFAR-10 and CIFAR-100 Dataset in TensorFlow

 

Model fitting

Model fitting can be done using the code below.

Python3




hist = model.fit(x_train, y_train,
                 epochs=5,
                 batch_size=64,
                 verbose=1,
                 validation_data=(x_val, y_val))


Output:

Image classification using CIFAR-10 and CIFAR-100 Dataset in TensorFlow

 

Using model to train for CIFAR10

Now we will use the convolution layers of this model to build our CIFAR10 classifier.

Python3




temp = model.get_layer('conv2d_3')
last_output = temp.output
last_output.shape


Output:

TensorShape([None, 16, 16, 128])

Now implementing a functional model which will use the previous model’s output and learn on top of it.

Python3




x = layers.Flatten()(last_output)
  
x = layers.Dense(256, activation='relu')(x)
x = layers.BatchNormalization()(x)
  
x = layers.Dense(256, activation='relu')(x)
x = layers.Dropout(0.3)(x)
x = layers.BatchNormalization()(x)
  
output = layers.Dense(10, activation='softmax')(x)
  
model_new = keras.Model(model.input, output)


Let’s check the summary of this new model.

Python3




model_new.summary()


Output:

Image classification using CIFAR-10 and CIFAR-100 Dataset in TensorFlow

 

Now, let’s compile the model with the same loss, optimizer, and metrics used in the CIFAR100 classifier.

Python3




model_new.compile(
    loss='categorical_crossentropy',
    optimizer='adam',
    metrics=['AUC', 'accuracy']
)


So, we have prepared a new model which is now ready to be trained on the CIFAR10 dataset. Let’s load this data as well using the TensorFlow API.

Python3




# Load in the data
cifar10 = tf.keras.datasets.cifar10
  
# Distribute it to train and test set
(x_train, y_train), (x_val, y_val) = cifar10.load_data()
print(x_train.shape, y_train.shape, x_val.shape, y_val.shape)


Output:

Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
170498071/170498071 [==============================] - 14s 0us/step
(50000, 32, 32, 3) (50000, 1) (10000, 32, 32, 3) (10000, 1)

Python3




y_train = tf.one_hot(y_train, depth=10,
                     dtype=tf.float64)
y_val = tf.one_hot(y_val, depth=10,
                   dtype=tf.float64)
  
y_train = tf.squeeze(y_train)
y_val = tf.squeeze(y_val)


Now we will train our model.

Python3




history = model_new.fit(x_train, y_train,
                        batch_size=64,
                        epochs=5,
                        verbose=1,
                        validation_data=(x_val, y_val))


Output:

Image classification using CIFAR-10 and CIFAR-100 Dataset in TensorFlow

 

Conclusion

By training the model for more epochs the best results can be obtained.

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments