Friday, December 27, 2024
Google search engine
HomeLanguagesHow To Visualize Sparse Matrix in Python using Matplotlib?

How To Visualize Sparse Matrix in Python using Matplotlib?

Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack.

Visualize Sparse Matrix using Matplotlib

Spy is a function used to visualize the array as an image similar to matplotlib imshow function, but it is used in case of sparse matrix instead of dense matrix. A sparse matrix is a matrix where most of the elements are zero.

Sparse matrix and its representation

Spy function uses two plotting styles to visualize the array, these are:

  • Image style
  • Marker style

Both the styles can be used for full arrays but in case of spmatrix instances only the marker style works. If marker or markersize is None then imshow function is used, and all the remaining keyword arguments are passed to this function; else, a Line2D object will be returned with the value of marker determining the marker type, and any remaining keyword arguments passed to plot function.

Syntax: matplotlib.pyplot.spy(Z, precision=0, marker=None, markersize=None, aspect=’equal’, origin=’upper’, \*\*kwargs)

Return value:

The return type depends on the plotting style, i.e. AxesImage or Line2D.

Parameters:

Parameter Value Use
Z array-like (M, N) The array to be plotted
Precision float or ‘present’, optional
default:zero
If precision is 0, any non-zero value will be plotted; else, values of |Z| > precision will be plotted.
For spmatrix instances, there is a special case: if precision is ‘present’, any value present in the array will be plotted, even if it is identically zero.
Origin {‘upper’, ‘lower’}, optional
default:’upper’
Place the [0, 0] index of the array in the upper left or lower left corner of the axes.
Aspect {‘equal’, ‘auto’, None} or float, optional
default:’equal’
It controls the aspect ratio of the axes. The aspect is of particular relevance for images since it may distort the image, i.e. pixel will not be square.

  • ‘equal’: Ensures an aspect ratio of 1. Pixels will be square.
  • ‘auto’: The axes is kept fixed and the aspect is adjusted so that the data fit in the axes. In general, this will result in non-square pixels.
  • None: Use rcParams[“image.aspect”]
  • Other parameters: **kwargs

    These are the additional parameters that helps to get different plotting styles.

    Property Description
    agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
    alpha float or None
    animated bool
    antialiased bool
    clip_box Bbox
    clip_on bool
    clip_path Patch or (Path, Transform) or None
    color color
    contains callable
    dash_capstyle {‘butt’, ’round’, ‘projecting’}
    dash_joinstyle {‘miter’, ’round’, ‘bevel’}
    dashes sequence of floats (on/off ink in points) or (None, None)
    data (2, N) array or two 1D arrays
    drawstyle {‘default’, ‘steps’, ‘steps-pre’, ‘steps-mid’, ‘steps-post’}
    figure figure
    fillstyle {‘full’, ‘left’, ‘right’, ‘bottom’, ‘top’, ‘none’}
    grid str
    in_layout bool
    label object
    linestyle {‘-‘, ‘–‘, ‘-.’, ‘:’, ”, (offset, on-off-seq), …}
    linewidth float
    marker marker style
    markeredgecolor color
    markeredgewidth float
    markerfacecolor color
    markerfacecoloralt color
    markersize float
    markevery None or int or (int, int) or slice or List[int] or float or (float, float)
    path_effects Abstract path effects
    picker float or callable[[Artist, Event], Tuple[bool, dict]]
    pickradius float
    rasterized bool or None
    sketch_params (scale: float, length: float, randomness: float)
    snap bool or None
    solid_capstyle {‘butt’, ’round’, ‘projecting’}
    solid_joinstyle {‘miter’, ’round’, ‘bevel’}
    transform matplotlib.transforms.Transform
    url str
    visible bool
    xdata 1D array
    ydata 1D array
    zorder float

    Example 1:




    # Implementation of matplotlib spy function
    import matplotlib.pyplot as plt
    import numpy as np
      
      
    x = np.random.randn(50, 50)
      
    x[15, :] = 0.
    x[:, 40] = 0.
      
    plt.spy(x)

    
    

    Output:
    Visualize sparse matrix python

    Example 2:




    # Implementation of matplotlib spy function
    import matplotlib.pyplot as plt
    import numpy as np
      
    x = np.random.randn(50, 50)
    x[15, :] = 0.
    x[:, 40] = 0.
      
    plt.spy(x, precision = 0.1, markersize = 5)

    
    

    Output:
    Visualize sparse matrix python

    RELATED ARTICLES

    Most Popular

    Recent Comments