Thursday, October 23, 2025
HomeLanguagesHow to Rescale a Tensor in the Range and Sum to...

How to Rescale a Tensor in the Range [0, 1] and Sum to 1 in PyTorch?

In this article, we are going to discuss How to Rescale a Tensor in the Range [0, 1] and Sum to 1 in PyTorch using Python.

Softmax() method

The Softmax() method helps us to rescale a tensor of n-dimensional along a particular dimension, the elements of this input tensor are in between the range of [0,1] and the sum to 1. This method returns a tensor of the same shape and dimension as the input tensor and the values lie within the range [0, 1]. before moving further let’s see the syntax of the given method.

Syntax: torch.nn.Softmax(dim)

Parameters:

  • dim: The dim is dimension in which we compute the Softmax.

Returns: It will returns a tensor with same shape and dimension as the input tensor and the values are in between the range [0, 1].

Example 1: In this example, we rescale a 1D tensor in the range [0, 1] and sum to 1.

Python




# import required libraries
import torch
  
# define a tensor
input_tens = torch.tensor([0.1237, 1.8373, 
                           -0.2343, -1.8373,
                           0.2343])
  
print(" input tensor: ", input_tens)
  
# Define the Softmax function
softmax = torch.nn.Softmax(dim=0)
  
# Apply above defined Softmax function
# on input tensor
output = softmax(input_tens)
  
# display tensor that containing Softmax values
print(" tensor that containing Softmax values: ", 
      output)
  
# display sum
print(" sum  = ", output.sum())


Output:

 

Example 2: In this example, we rescale a 2D tensor in the range [0, 1] and sum to 1.

Python




# import required libraries
import torch
  
# define a tensor
input_tens = torch.tensor([[-0.9383, -1.4378, 0.5247],
                           [0.8787,  0.2248, -1.3348],
                           [1.3739,  1.3379, -0.2445]])
  
print("\n input tensor: \n", input_tens)
  
# Define the Softmax function
softmax = torch.nn.Softmax(dim=0)
  
# Apply above defined Softmax function on 
# input tensor
output = softmax(input_tens)
  
# display tensor that containing Softmax values
print("\n tensor that containing Softmax values: \n", output)
  
# display sum
print("\n sum  = ", output.sum())


Output:

 

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32361 POSTS0 COMMENTS
Milvus
88 POSTS0 COMMENTS
Nango Kala
6728 POSTS0 COMMENTS
Nicole Veronica
11892 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11954 POSTS0 COMMENTS
Shaida Kate Naidoo
6852 POSTS0 COMMENTS
Ted Musemwa
7113 POSTS0 COMMENTS
Thapelo Manthata
6805 POSTS0 COMMENTS
Umr Jansen
6801 POSTS0 COMMENTS