Saturday, January 18, 2025
Google search engine
HomeLanguagesHow to Rescale a Tensor in the Range and Sum to...

How to Rescale a Tensor in the Range [0, 1] and Sum to 1 in PyTorch?

In this article, we are going to discuss How to Rescale a Tensor in the Range [0, 1] and Sum to 1 in PyTorch using Python.

Softmax() method

The Softmax() method helps us to rescale a tensor of n-dimensional along a particular dimension, the elements of this input tensor are in between the range of [0,1] and the sum to 1. This method returns a tensor of the same shape and dimension as the input tensor and the values lie within the range [0, 1]. before moving further let’s see the syntax of the given method.

Syntax: torch.nn.Softmax(dim)

Parameters:

  • dim: The dim is dimension in which we compute the Softmax.

Returns: It will returns a tensor with same shape and dimension as the input tensor and the values are in between the range [0, 1].

Example 1: In this example, we rescale a 1D tensor in the range [0, 1] and sum to 1.

Python




# import required libraries
import torch
  
# define a tensor
input_tens = torch.tensor([0.1237, 1.8373
                           -0.2343, -1.8373,
                           0.2343])
  
print(" input tensor: ", input_tens)
  
# Define the Softmax function
softmax = torch.nn.Softmax(dim=0)
  
# Apply above defined Softmax function
# on input tensor
output = softmax(input_tens)
  
# display tensor that containing Softmax values
print(" tensor that containing Softmax values: "
      output)
  
# display sum
print(" sum  = ", output.sum())


Output:

 

Example 2: In this example, we rescale a 2D tensor in the range [0, 1] and sum to 1.

Python




# import required libraries
import torch
  
# define a tensor
input_tens = torch.tensor([[-0.9383, -1.4378, 0.5247],
                           [0.87870.2248, -1.3348],
                           [1.37391.3379, -0.2445]])
  
print("\n input tensor: \n", input_tens)
  
# Define the Softmax function
softmax = torch.nn.Softmax(dim=0)
  
# Apply above defined Softmax function on 
# input tensor
output = softmax(input_tens)
  
# display tensor that containing Softmax values
print("\n tensor that containing Softmax values: \n", output)
  
# display sum
print("\n sum  = ", output.sum())


Output:

 

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments