Thursday, December 26, 2024
Google search engine
HomeLanguagesHow to Pretty Print an Entire Pandas Series or DataFrame?

How to Pretty Print an Entire Pandas Series or DataFrame?

In this article, we are going to see how to Pretty Print the entire pandas Series / Dataframe.  There are various pretty print options are available for use with this method. Here we will discuss 3 ways to Pretty Print the entire Pandas Dataframe:

Creating DataFrame to Pretty-print an entire Pandas DataFrame

Python3




import pandas as pd
 
# Create a dataframe
df = pd.DataFrame({
  'Product_id': ['ABC', 'DEF', 'GHI', 'JKL',
                 'MNO', 'PQR', 'STU', 'VWX'],
   
  'Stall_no': [37, 38, 9, 50, 7, 23, 33, 4],
  'Grade': [1, 0, 0, 2, 0, 1, 3, 0],
   
  'Category': ['Fashion', 'Education', 'Technology',
               'Fashion', 'Education', 'Technology',
               'Fashion', 'Education'],
   
  'Demand': [10, 12, 14, 15, 13, 20, 10, 15],
  'charges1': [376, 397, 250, 144, 211, 633, 263, 104],
  'charges2': [11, 12, 9, 13, 4, 6, 13, 15],
  'Max_Price': [4713, 10352, 7309, 20814, 9261,
                6104, 5257, 5921],
   
  'Selling_price': [4185.9477, 9271.490256, 6785.701362,
                    13028.91782, 906.553935, 5631.247872,
                    3874.264992, 4820.943]})
display(df)


Output:

 

Some Important terms to use in pretty print options are discussed below:

  • display.max_columns: The maximum number of columns pandas should print. If None is provided as an argument all columns are printed.
  • display.max_rows: The maximum number of rows pandas should print. If None is provided as an argument all rows are printed.
  • display.colheader_justify: Controls the alignment of column headers
  • display.precision: Floating point output precision in terms of a number of places after the decimal, for regular formatting as well as scientific notation.
  • display.width: Width of the display in characters. If set to None, pandas will correctly auto-detect the width.

Reduce the Size of a Pandas Dataframe using pd.set_options() 

We will use some options of the set_options() method on the above df to see all rows, all columns, all columns in one row with center-aligned column headers, and rounding the number of places after the decimal for each floating value to 2.

Python3




pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.width', 1000)
pd.set_option('display.colheader_justify', 'center')
pd.set_option('display.precision', 2)
display(df)


Output:

Once set through pd.set_options() method, the same settings are used with all the next Dataframe printing commands. 

 

Reduce the Size of a Pandas Dataframe using pd.option_context()

The pd.set_option() method provides permanent setting for displaying dataframe. pd.option_context() temporarily sets the options in with statement context. Following code prints the above df with 4 rows, all columns, all columns in one row with left-aligned column headers, and rounding the number of places after the decimal for each floating value.

Python3




with pd.option_context('display.max_rows', 5,
                       'display.max_columns', None,
                       'display.width', 1000,
                       'display.precision', 3,
                       'display.colheader_justify', 'left'):
    display(df)


Output:

 

Reduce the Size of a Pandas Dataframe using options.display

Following code prints the above df with 4 rows, 4 columns, all columns in one row with left-aligned column headers, and not rounding the number of places after the decimal for each floating value.

Python3




import pandas as pd
import numpy as np
 
def display_options():
     
    display = pd.options.display
    display.max_columns = 5
    display.max_rows = 4
    display.max_colwidth = 222
    display.width = None
    return None
 
display_options()
display(df)


Output:

 

RELATED ARTICLES

Most Popular

Recent Comments