Thursday, December 26, 2024
Google search engine
HomeLanguagesHow to plot data from a text file using Matplotlib?

How to plot data from a text file using Matplotlib?

Perquisites: Matplotlib, NumPy

In this article, we will see how to load data files for Matplotlib. Matplotlib is a 2D Python library used for Date Visualization. We can plot different types of graphs using the same data like:

  • Bar Graph
  • Line Graph
  • Scatter Graph
  • Histogram Graph and many.

In this article, we will learn how we can load data from a file to make a graph using the “Matplotlib” python module. Here we will also discuss two different ways to extract data from a file.  In the First Module, we will discuss extracting data using the inbuilt CVS module and In the Second Module, we will use a third-party “NumPy” Module to extract data from a file. 

Requirement:

A text file from where data should be extracted.  Let the file name = GFG.txt

Method 1: In this method, we will extract data using CSV module to load CVS files.
  
Step 1:

Import all required modules.

Python3




import matplotlib.pyplot as plt
import csv


Step 2: Create X and Y variables to store X-axis data and Y-axis data from a text file.  

Python3




import matplotlib.pyplot as plt
import csv
 
X = []
Y = []


Step 3: Open text file in read mode. Pass ‘file_name’ and delimiter in reader function and store returned data in a new variable. 

Python3




import matplotlib.pyplot as plt
import csv
 
X = []
Y = []
 
with open('GFG.txt', 'r') as datafile:
    plotting = csv.reader(datafile, delimiter=',')


Step 4: Create a loop, that will append the data in X and Y variable.

Python3




import matplotlib.pyplot as plt
import csv
 
X = []
Y = []
 
with open('GFG.txt', 'r') as datafile:
    plotting = csv.reader(datafile, delimiter=',')
     
    for ROWS in plotting:
        X.append(int(ROWS[0]))
        Y.append(int(ROWS[1]))


Step 5: Now pass all the parameter in their respective functions.

Python3




import matplotlib.pyplot as plt
import csv
 
X = []
Y = []
 
with open('GFG.txt', 'r') as datafile:
    plotting = csv.reader(datafile, delimiter=',')
     
    for ROWS in plotting:
        X.append(int(ROWS[0]))
        Y.append(int(ROWS[1]))
 
plt.plot(X, Y)
plt.title('Line Graph using CSV')
plt.xlabel('X')
plt.ylabel('Y')
plt.show()


Output:

load from fie line

Method 2: In this method, we will extract data using numpy module to load files. Here you will notice that Step 2,3 and 4 are replaced by np.loadtxt( )

Python3




import matplotlib.pyplot as plt
import numpy as np
 
X, Y = np.loadtxt('GFG.txt', delimiter=',', unpack=True)
 
plt.bar(X, Y)
plt.title('Line Graph using NUMPY')
plt.xlabel('X')
plt.ylabel('Y')
plt.show()


 
 

Output:

 

Load file matpotlib bar

 

You can also try other different graphs by just changing 1 line

 

plt.plot(X,Y) to plt.scatter(X,Y) or plt.plot(X,Y)

 

Python3




import matplotlib.pyplot as plt
import numpy as np
 
X, Y = np.loadtxt('GFG.txt', delimiter=',', unpack=True)
 
plt.plot(X, Y)
plt.title('Line Graph using NUMPY')
plt.xlabel('X')
plt.ylabel('Y')
plt.show()


Output:

load file matplotlib line

Python3




import matplotlib.pyplot as plt
import numpy as np
 
X, Y = np.loadtxt('GFG.txt', delimiter=',', unpack=True)
 
plt.scatter(X, Y)
plt.title('Line Graph using NUMPY')
plt.xlabel('X')
plt.ylabel('Y')
plt.show()


 
 

Output:

 

load file matplotlib scatter

 

RELATED ARTICLES

Most Popular

Recent Comments