Saturday, November 16, 2024
Google search engine
HomeLanguagesHow to plot a dataframe using Pandas?

How to plot a dataframe using Pandas?

Pandas is one of the most popular Python packages used in data science. Pandas offer a powerful, and flexible data structure ( Dataframe & Series ) to manipulate, and analyze the data. Visualization is the best way to interpret the data. 

Python has many popular plotting libraries that make visualization easy. Some of them are MatplotlibSeaborn, and Python Plotly. It has great integration with Matplotlib. We can plot a Dataframe using the plot() method. But we need a Dataframe to plot. We can create a Dataframe by just passing a dictionary to the DataFrame() method of the Pandas library. 

Plot a Dataframe using Pandas

Let’s create a simple Dataframe: 

Python3




# importing required library
# In case pandas is not installed on your machine
# use the command 'pip install pandas'.
import pandas as pd
import matplotlib.pyplot as plt
  
# A dictionary which represents data
data_dict = {'name': ['p1', 'p2', 'p3', 'p4', 'p5', 'p6'],
             'age': [20, 20, 21, 20, 21, 20],
             'math_marks': [100, 90, 91, 98, 92, 95],
             'physics_marks': [90, 100, 91, 92, 98, 95],
             'chem_marks': [93, 89, 99, 92, 94, 92]
             }
  
# creating a data frame object
df = pd.DataFrame(data_dict)
  
# show the dataframe
# bydefault head() show
# first five rows from top
df.head()


Output: 

  name  age  math_marks  physics_marks  chem_marks
0   p1   20         100             90          93
1   p2   20          90            100          89
2   p3   21          91             91          99
3   p4   20          98             92          92
4   p5   21          92             98          94

Pandas Plotting

There are a number of plots available to interpret the data. Each graph is used for a purpose. Some of the plots are BarPlots, ScatterPlots, and Histograms, etc.

Scatter Plot

To get the scatterplot of a dataframe all we have to do is to just call the plot() method by specifying some parameters.

kind=’scatter’,x= ‘some_column’,y=’some_colum’,color=’somecolor’

Python3




# scatter plot
df.plot(kind='scatter',
        x='math_marks',
        y='physics_marks',
        color='red')
  
# set the title
plt.title('ScatterPlot')
  
# show the plot
plt.show()


Output: 

Pandas Plotting

There are many ways to customize plots this is the basic one. 

Bar Plot

Similarly, we have to specify some parameters for plot() method to get the bar plot. 

kind=’bar’,x= ‘some_column’,y=’some_colum’,color=’somecolor’

Python3




# bar plot
df.plot(kind='bar',
        x='name',
        y='physics_marks',
        color='green')
  
# set the title
plt.title('BarPlot')
  
# show the plot
plt.show()


Output: 

Pandas Plotting

Line Plot

The line plot of a single column is not always useful, to get more insights we have to plot multiple columns on the same graph. To do so we have to reuse the axes. 

kind=’line’,x= ‘some_column’,y=’some_colum’,color=’somecolor’,ax=’someaxes’  

Python3




# Get current axis
ax = plt.gca()
  
# line plot for math marks
df.plot(kind='line',
        x='name',
        y='math_marks',
        color='green', ax=ax)
  
# line plot for physics marks
df.plot(kind='line', x='name',
        y='physics_marks',
        color='blue', ax=ax)
  
# line plot for chemistry marks
df.plot(kind='line', x='name',
        y='chem_marks',
        color='black', ax=ax)
  
# set the title
plt.title('LinePlots')
  
# show the plot
plt.show()


Output:

Pandas Plotting

Box Plot

Box plot is majorly used to identify outliers, we can information like median, maximum, minimum, quartiles and so on. Let’s see how to plot it.

Python3




df.plot.box()
plt.show()


Output:

plot1

RELATED ARTICLES

Most Popular

Recent Comments