Thursday, December 26, 2024
Google search engine
HomeLanguagesHow to drop one or multiple columns in Pandas Dataframe

How to drop one or multiple columns in Pandas Dataframe

Let’s discuss how to drop one or multiple columns in Pandas Dataframe. To Delete a column from a Pandas DataFrame or Drop one or more than one column from a DataFrame can be achieved in multiple ways. 

Create a simple Dataframe with dictionary of lists, say column names are A, B, C, D, E. In this article, we will cover 6 different methods to delete some columns from Pandas DataFrame.

Python3




# Import pandas package
import pandas as pd
 
# create a dictionary with five fields each
data = {
    'A': ['A1', 'A2', 'A3', 'A4', 'A5'],
    'B': ['B1', 'B2', 'B3', 'B4', 'B5'],
    'C': ['C1', 'C2', 'C3', 'C4', 'C5'],
    'D': ['D1', 'D2', 'D3', 'D4', 'D5'],
    'E': ['E1', 'E2', 'E3', 'E4', 'E5']}
 
# Convert the dictionary into DataFrame
df = pd.DataFrame(data)
 
df


Output: 

 

Drop Columns from a Dataframe using drop() method

Example 1: Remove specific single columns. 

Python3




# Import pandas package
import pandas as pd
 
# create a dictionary with five fields each
data = {
    'A': ['A1', 'A2', 'A3', 'A4', 'A5'],
    'B': ['B1', 'B2', 'B3', 'B4', 'B5'],
    'C': ['C1', 'C2', 'C3', 'C4', 'C5'],
    'D': ['D1', 'D2', 'D3', 'D4', 'D5'],
    'E': ['E1', 'E2', 'E3', 'E4', 'E5']}
 
# Convert the dictionary into DataFrame
df = pd.DataFrame(data)
 
# Remove column name 'A'
df.drop(['A'], axis=1)


Output: 

 

Example 2: Remove specific multiple columns. 

Python3




# Import pandas package
import pandas as pd
 
# create a dictionary with five fields each
data = {
    'A': ['A1', 'A2', 'A3', 'A4', 'A5'],
    'B': ['B1', 'B2', 'B3', 'B4', 'B5'],
    'C': ['C1', 'C2', 'C3', 'C4', 'C5'],
    'D': ['D1', 'D2', 'D3', 'D4', 'D5'],
    'E': ['E1', 'E2', 'E3', 'E4', 'E5']}
 
# Convert the dictionary into DataFrame
df = pd.DataFrame(data)
 
# Remove two columns name is 'C' and 'D'
df.drop(['C', 'D'], axis=1)
 
# df.drop(columns =['C', 'D'])


Output: 

 

Example 3: Remove columns based on column index. 

Python3




# Import pandas package
import pandas as pd
 
# create a dictionary with five fields each
data = {
    'A': ['A1', 'A2', 'A3', 'A4', 'A5'],
    'B': ['B1', 'B2', 'B3', 'B4', 'B5'],
    'C': ['C1', 'C2', 'C3', 'C4', 'C5'],
    'D': ['D1', 'D2', 'D3', 'D4', 'D5'],
    'E': ['E1', 'E2', 'E3', 'E4', 'E5']}
 
# Convert the dictionary into DataFrame
df = pd.DataFrame(data)
 
# Remove three columns as index base
df.drop(df.columns[[0, 4, 2]], axis=1, inplace=True)
 
df


Output: 

 

Drop Columns from a Dataframe using iloc[] and drop() method. 

Remove all columns between a specific column to another column. 

Python3




# Import pandas package
import pandas as pd
# create a dictionary with five fields each
data = {
    'A': ['A1', 'A2', 'A3', 'A4', 'A5'],
    'B': ['B1', 'B2', 'B3', 'B4', 'B5'],
    'C': ['C1', 'C2', 'C3', 'C4', 'C5'],
    'D': ['D1', 'D2', 'D3', 'D4', 'D5'],
    'E': ['E1', 'E2', 'E3', 'E4', 'E5']}
 
# Convert the dictionary into DataFrame
df = pd.DataFrame(data)
 
# Remove all columns between column index 1 to 3
df.drop(df.iloc[:, 1:3], inplace=True, axis=1)
 
df


Output: 

 

Method 3: Drop Columns from a Dataframe using ix() and drop() method. 

Remove all columns between a specific column name to another column’s name. 

Python3




# Import pandas package
import pandas as pd
 
# create a dictionary with five fields each
data = {
    'A': ['A1', 'A2', 'A3', 'A4', 'A5'],
    'B': ['B1', 'B2', 'B3', 'B4', 'B5'],
    'C': ['C1', 'C2', 'C3', 'C4', 'C5'],
    'D': ['D1', 'D2', 'D3', 'D4', 'D5'],
    'E': ['E1', 'E2', 'E3', 'E4', 'E5']}
 
# Convert the dictionary into DataFrame
df = pd.DataFrame(data)
 
# Remove all columns between column name 'B' to 'D'
df.drop(df.ix[:, 'B':'D'].columns, axis=1)


Output: 

 

Method 4: Drop Columns from a Dataframe using loc[] and drop() method. 

Remove all columns between a specific column name to another column’s name. 

Python3




# Import pandas package
import pandas as pd
 
# create a dictionary with five fields each
data = {
    'A': ['A1', 'A2', 'A3', 'A4', 'A5'],
    'B': ['B1', 'B2', 'B3', 'B4', 'B5'],
    'C': ['C1', 'C2', 'C3', 'C4', 'C5'],
    'D': ['D1', 'D2', 'D3', 'D4', 'D5'],
    'E': ['E1', 'E2', 'E3', 'E4', 'E5']}
 
# Convert the dictionary into DataFrame
df = pd.DataFrame(data)
 
# Remove all columns between column name 'B' to 'D'
df.drop(df.loc[:, 'B':'D'].columns, axis=1)


Output: 

 

Note: Different loc() and iloc() is iloc() exclude last column range element.   

Method 5: Drop Columns from a Dataframe in an iterative way. 

Remove all columns between a specific column name to another column’s name. 

Python3




# Import pandas package
import pandas as pd
 
# create a dictionary with five fields each
data = {
    'A': ['A1', 'A2', 'A3', 'A4', 'A5'],
    'B': ['B1', 'B2', 'B3', 'B4', 'B5'],
    'C': ['C1', 'C2', 'C3', 'C4', 'C5'],
    'D': ['D1', 'D2', 'D3', 'D4', 'D5'],
    'E': ['E1', 'E2', 'E3', 'E4', 'E5']}
 
# Convert the dictionary into DataFrame
df = pd.DataFrame(data)
for col in df.columns:
    if 'A' in col:
        del df[col]
 
df


Output: 

Method 6: Python dataframe.pop() method

Python3




# Import pandas package
import pandas as pd
 
# create a dictionary with five fields each
data = {
    'A': ['A1', 'A2', 'A3', 'A4', 'A5'],
    'B': ['B1', 'B2', 'B3', 'B4', 'B5'],
    'C': ['C1', 'C2', 'C3', 'C4', 'C5'],
    'D': ['D1', 'D2', 'D3', 'D4', 'D5'],
    'E': ['E1', 'E2', 'E3', 'E4', 'E5']}
 
# Convert the dictionary into DataFrame
df = pd.DataFrame(data)
df.pop('B')
 
df


Output:

A    C    D    E
0 A1 C1 D1 E1
1 A2 C2 D2 E2
2 A3 C3 D3 E3
3 A4 C4 D4 E4
4 A5 C5 D5 E5

RELATED ARTICLES

Most Popular

Recent Comments