Thursday, December 26, 2024
Google search engine
HomeLanguagesHow to Create Subplots in Matplotlib with Python?

How to Create Subplots in Matplotlib with Python?

Prerequisite: Matplotlib 

In this article, we will learn how to add markers to a Graph Plot using Matplotlib with Python. For that one must be familiar with the following concepts: 

  • Matplotlib : Matplotlib is a tremendous visualization library in Python for 2D plots of arrays. Matplotlib may be a multi-platform data visualization library built on NumPy arrays and designed to figure with the broader SciPy stack. It was introduced by John Hunter within the year 2002.
  • Subplots : The matplotlib.pyplot.subplots() method provides a way to plot multiple plots on a single figure. Given the number of rows and columns, it returns a tuple (fig, ax), giving a single figure fig with an array of axes ax.

Approach

  • Import packages
  • Import or create some data
  • Create subplot objects.
  • Draw a plot with it.

Example 1:

Python3




# importing packages
import matplotlib.pyplot as plt
import numpy as np
  
# making subplots objects
fig, ax = plt.subplots(3, 3)
  
# draw graph
for i in ax:
    for j in i:
        j.plot(np.random.randint(0, 5, 5), np.random.randint(0, 5, 5))
  
plt.show()


Output :

Example 2 :

Python3




# importing packages
import matplotlib.pyplot as plt
import numpy as np
  
# making subplots objects
fig, ax = plt.subplots(2, 2)
  
# draw graph
ax[0][0].plot(np.random.randint(0, 5, 5), np.random.randint(0, 5, 5))
ax[0][1].plot(np.random.randint(0, 5, 5), np.random.randint(0, 5, 5))
ax[1][0].plot(np.random.randint(0, 5, 5), np.random.randint(0, 5, 5))
ax[1][1].plot(np.random.randint(0, 5, 5), np.random.randint(0, 5, 5))
  
plt.show()


Output :

Example 3 :

Python3




# importing packages
import matplotlib.pyplot as plt
import numpy as np
  
# making subplots objects
fig, ax = plt.subplots(2, 2)
  
# create data
x = np.linspace(0, 10, 1000)
  
# draw graph
ax[0, 0].plot(x, np.sin(x), 'r-.')
ax[0, 1].plot(x, np.cos(x), 'g--')
ax[1, 0].plot(x, np.tan(x), 'y-')
ax[1, 1].plot(x, np.sinc(x), 'c.-')
  
plt.show()


Output :

RELATED ARTICLES

Most Popular

Recent Comments