Thursday, October 2, 2025
HomeLanguagesHow to Create a Tensor Whose Elements are Sampled from a Poisson...

How to Create a Tensor Whose Elements are Sampled from a Poisson Distribution in PyTorch

In this article, we will discuss how to create a Tensor whose elements are Sampled from a Poisson Distribution in PyTorch in Python.

torch.poisson() method

The torch.poisson() method helps us to create a tensor whose elements are sampled from a Poisson distribution. This method accepts a tensor as input and this input tensor contains the rates of the Poisson distribution. This method returns a tensor of the size same as the input tensor and the elements of this tensor are sampled from a Poisson distribution with the rate parameter. before moving further let’s see the syntax of the given method.

Syntax: torch.poisson(rates)

Parameters:

  • rates (Tensor): This parameter is used to sample elements from a Poisson distribution.

Returns:This method returns a tensor and the elements of this tensor are sampled from a Poisson distribution with the rate parameter. 

Example 1:

In this example, we will discuss how to create a 1D Tensor whose elements are Sampled from a Poisson Distribution.

Python




# import required libraries
import torch
 
# create torch tensor of rate parameters
rates_tens = torch.tensor([2.7345, 3.4347,
                           4.1237, 1.3379, 3.2343])
print("tensor of rate parameters: ", rates_tens)
 
# apply poisson() method
pois_tens = torch.poisson(rates_tens)
 
# display result
print("Poisson Tensor: ", pois_tens)


Output:

 

Example 2: In this example, we will discuss how to create a 2D Tensor whose elements are Sampled from a Poisson Distribution.

Python




# import required libraries
import torch
 
# create torch tensor of rate parameters
rates_tens = torch.tensor([[4.1237, 1.8373, 3.2343],
                           [2.3344, 3.3324, 1.3378],
                           [3.2349, 2.4447, 4.5269]])
 
print("tensor of rate parameters: \n", rates_tens)
 
# apply poisson() method
pois_tens = torch.poisson(rates_tens)
 
# display result
print("Poisson Tensor: \n", pois_tens)


Output:

 

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32331 POSTS0 COMMENTS
Milvus
85 POSTS0 COMMENTS
Nango Kala
6703 POSTS0 COMMENTS
Nicole Veronica
11867 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11926 POSTS0 COMMENTS
Shaida Kate Naidoo
6818 POSTS0 COMMENTS
Ted Musemwa
7079 POSTS0 COMMENTS
Thapelo Manthata
6775 POSTS0 COMMENTS
Umr Jansen
6776 POSTS0 COMMENTS